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Abstract—In this paper, we study the impact of the convo-
lutional neural networks (CNN) quantization for the channel
estimation. In the wireless network edge, with the adoption
of deep learning (DL) algorithms, the limited computational
resources bottleneck needs to be considered. Thus, a study using
a field-programmable gate array (FPGA) platform is carried
out, where the resource utilization and the timing requirements
are analyzed. A single-input single-output orthogonal frequency-
division multiplexing (OFDM) end-to-end link is adopted in
this work. The bit error rate (BER) measures the quantization
impact of the CNN-based channel estimation on the global
system. The obtained results show that an improvement in the
maximum operating frequency and in the resource efficiency can
be obtained without deteriorating the end-to-end performance.

Index Terms—Channel Estimation; CNN; FPGA; OFDM;
Quantization; Real-time systems.

I. INTRODUCTION

Recently, novel deep learning (DL) algorithms have been
developed for various processing functions of wireless com-
munications systems [1]. One of those functions is the channel
estimation, which presents several challenges due to nonlinear
and complex issues between the transmitter and the receiver.
For such purposes, a DL architecture particularly successful
for the channel estimation is the convolutional neural net-
work (CNN) [2]. The CNN’s ability to automatically extract
the underlying representative characteristics and features in
image processing tasks is explored to improve the channel
estimation [3]. However, the CNN hardware deployment is
typically performed in a software-oriented approach, which
imposes resource overhead in the edge of the radio access
networks (RAN) due to the computation intensity of the
floating-point architectures.
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Therefore, an efficient solution to exploit the computational
efficiency in the custom hardware is the bit quantization, which
reduces the complexity and storage demands. As evidenced
in [4], the prototyping step, which includes the quantization
process, assumes an important process in the DL algorithms
implementation in resource-limited hardware platforms, such
the field-programmable gate array (FPGA) that is commonly
used in processing functions on the RAN edge. Then, if
the CNN architectures are optimized for the hardware im-
plementation by means of the quantization, the CNN-based
channel estimation algorithms can be implemented in real-time
scenarios on the network edge.

In the literature, the quantization of CNN structures was
addressed in [5], [6], in which low-precision weights and
bias were exploited in order to decrease the hardware and
memory requirements. Furthermore, an FPGA implementation
in these papers was obtained to analyze the resource demands.
In terms of edge processing functions, a study for modulation
recognition was performed in [7], assessing the quantization
of a CNN architecture to obtain an optimized FPGA imple-
mentation. Regarding the channel estimation, to the best of
the author’s knowledge, this is the first work in which the
quantization effects of a CNN structure are analyzed from the
design to the real-time hardware implementation. Hence, this
work presents a study concerning the CNN quantization for the
channel estimation with the real-time FPGA implementation
as target. First, a CNN architecture is designed, followed by
its flexible quantization. Several bit configurations are adopted
to analyze the fixed-point quantization effects on the channel
estimation performance. Furthermore, the resource utilization,
the timing analysis and its system performance are obtained
for each fixed-point FPGA implementation.

The remaining of the paper is organized as follows. In
Section II, the considered system model is described. Sec-
tion III provides a overview of the adopted CNN architecture
in this work. Results are provided in Section IV. Section V is
dedicated to the conclusions and future work.



Fig. 1. The SISO OFDM system model adopted in this work.

Notation: We use boldface small letters and capital letters
to denote vectors and matrices, respectively. The operator ⊛
represents circular convolution.

II. SYSTEM MODEL

The system model considered in this work is a single-
input single-output (SISO) orthogonal frequency division mul-
tiplexing (OFDM) end-to-end link under the tapped delay
line (TDL) channel model, typically considered in the current
generation of wireless networks. Regarding the channel, issues
like the Doppler effect, fading and multipath impose the loss of
subcarriers orthogonality in OFDM systems which deteriorates
the global system performance. Then, the main goal of the
channel estimation is to estimate the overall complex gain from
the transmitter to the receiver.

In Fig. 1, an overview of the system model is depicted.
After the pseudorandom binary sequence (PRBS) generation,
the M-ary quadrature amplitude modulation (M-QAM) is
performed, and then, the mapping of the frequency resource
grid is realized (X). The OFDM modulation is accomplished
to acquire the time-domain signal (x) from the resource grid.
After the channel, the received signal (r) in the time-domain
can be expressed as r = x ⊛ h + z, in which h is the channel
impulse response, and z denotes the additive white Gaussian
noise. In the receiver, we assume that the time and frequency
synchronizations are perfect in order to individualize the chan-
nel estimation. After the OFDM demodulation, the received
frequency resource grid (R) is obtained as R = XH + Z, in
which the X, H and Z is the frequency response of the x, h and
z, respectively. It is worth mentioning that in this work, a pilot
aided scheme is considered to decrease the overhead imposed
by the time training symbol. After the channel estimation,
the complex channel gain (Ĥ) is estimated, and it is used
in the equalization to mitigate the channel effects. Finally,
the decoding and demapping is performed to recover the
transmitted bits and compute the bit error rate (BER).

III. CNN ARCHITECTURE

The goal of this paper is to study the impact of the CNN
quantization in the channel estimation. The CNN architecture
we proposed for this processing function is inspired by [2],
and is shown in Fig. 2. The network consists of two convo-
lutional layers (Conv), filters with dimension 5× 5 and ReLu
activation functions. The CNN was trained offline using the
machine learning toolbox of Matlab, to optimize the network
parameters ΘΘΘ. Dataset of 50000 (complex-values) examples
was generated for the training process, with the real and
imaginary parts computed separately.

Fig. 2. The considered CNN architecture with two convolutional layers, and
a reLu activation function used for channel estimation.

After obtaining the optimized ΘΘΘ parameters, a hardware-
oriented implementation of the CNN architecture was per-
formed. Therefore, an initial floating-point CNN model was
designed in Matlab (Matlab) and from this, one floating-
model (Simulink) and five fixed-point real-time models in
Simulink were implemented. In order to obtain the hardware
description language (HDL) code for FPGA implementation,
the HDL Coder is used due to its versatility to convert the
fixed-point Simulink models. Furthermore, this tool uses the
Vivado libraries to synthetize and implement the target design
in a specific hardware platform.

The fixed-point configurations adopted in this work are
32 bits with 28 fractional places (Fix32 28), 24 bits with
20 fractional places (Fix24 20), 16 bits with 12 fractional
place (Fix16 12), 12 bits with 8 fractional places (Fix12 8),
and 8 bits with 4 fractional places (Fix8 4). Table I shows the
mean-square error (MSE) of these implementations regarding
the floating-point Matlab model as a reference. As we can see,
the MSE increasing follows the decrease of bits length, as ex-
pected. Thus, in the next section, the effect of each quantizated
model concerning the channel estimation is analyzed.

TABLE I
MSE BETWEEN THE DIFFERENT MODELS.

Model MSE Model MSE
Simulink 2.3× 10−18 Fix16 12 2.4× 10−7

Fix32 28 5.6× 10−17 Fix12 8 1.5× 10−5

Fix24 20 9.1× 10−13 Fix8 4 3.5× 10−2

IV. RESULTS

In this section, the results of the FPGA implementation
of each model is presented, in which the resource utilization
and the timing requirements are analyzed. Next, the system
impact of the data type quantization in the channel estimation
is obtained. The adopted device is a xczu19eg-ffvb1517-1-e.

A. Resource Utilization and Timing Requirements

Concerning the resource usage study, Table II shows the
implemented lookup table (LUT), LUT random access mem-
ory (LUTRAM), flip-flops (FF) and digital signal process-



ing (DSP) components. As we can see, the used resources
are highly dependent on the bit length of the model, which
means that the resource overhead can be diminished if the
correct quantization is performed.

TABLE II
RESOURCE ALLOCATED IN THE TARGET FPGA.

Resources LUT LUTRAM FF DSP
Available 522720 161280 1045440 1968

Fix32 28
499354 376 393806 200
95.5% 0.2% 37.7% 10.2%

Fix24 20
379087 312 293881 100
72.5% 0.2% 28.1% 5.1%

Fix16 12
251489 222 193996 50
48.1% 0.1% 18.6% 2.5%

Fix12 8
186963 0 143913 50
35.8% 0% 13.8% 2.5%

Fix8 4
125537 2 295243 0
24% 0.01% 9.1% 0%

The maximum operation frequency is also influenced by the
data size, as depicted in Table III. In addition, the period (T)
by the critical data path of the CNN is provided and the
corresponding maximum operation frequency (f ). Although
there is a certain tendency in the decrease of the data path
time along the decrease of the data size, in the Fix12 8 model
an increase is verified in the total path time. This can be the
result of a different strategy of the implementation tool, which
is correlated with the fact that the LUTRAMs are not used in
this case.

TABLE III
TIMING REQUIREMENTS IN THE TARGET FPGA.

Fix32 28 Fix24 20 Fix16 12 Fix12 8 Fix8 4

T (ns) 17.8 9.6 6.9 8.2 6.8
f (MHz) 56.1 103.8 144.5 122.4 147.5

B. Channel Estimation Impact in the End-to-end System

In addition to the trade-off study between the resource
overhead and timing requirements, the impact of the CNN
architecture quantization for the channel estimation needs to
be analyzed in the end-to-end link performance by means of
the BER. For this, a test dataset composed by 10000 examples
is used. The impact of the quantization in the BER metric
is shown in Fig. 3, in which the theoretical (Theo.), the
traditional least-square (LS) and the least minimum mean-
square error (LMMSE) estimators are also considered for
comparison. Note that the LS algorithm is usually adopted
in the real systems due to its simplicity, and the LMMSE is
the optimum one but its practical implementation is prohibitive
considering the need of channel knowledge.

The obtained results shows an immediately conclusion, the
Fix8 4 architecture cannot perform the channel estimation.
Thus, the adopted CNN configurations, except the Fix8 4,
are prepared to implement the channel estimation. As we can
see in Fig. 3, the BER results of these networks outperforms
the LS estimator and approaches the optimum LMMSE, vali-
datinng its use. With this study, a initial choice of a fixed-point
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Fig. 3. BER as a function of signal noise ratio (SNR) regarding the channel
estimation, considering the theoretical value, the LMMSE and LS estimators,
and the quantizated CNN models. The modulation order adopted is M = 16.

CNN architecture for the channel estimation can be performed
based on resources, timing and system performance results.
Furthermore, the obtained BER curves are in accordance
with a data input signal quantization study performed with
a floating-point 32-bit software-oriented CNN in [8, Fig. 10].

V. CONCLUSIONS

In this work, a study regarding the convolutional neural
networks (CNNs) quantization in the channel estimation was
performed for the next generation of wireless communications,
in which an optimized CNN architecture needs to be found for
the network edge implementation. Five fixed-point configura-
tions were analyzed concerning resource and timing require-
ments in a target hardware platform. Furthermore, the global
end-to-end impact of the channel estimation performance was
also studied in terms of bit error rate (BER). As future work,
robust deep learning (DL) algorithms for channel estimation
can be studied using novel DL-oriented platforms, as adaptive
compute acceleration platforms.
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