
Available online at www.sciencedirect.com

Procedia Computer Science 00 (2019) 000–000
www.elsevier.com/locate/procedia

International Conference on Industry 4.0 and Smart Manufacturing

Predictive maintenance on sensorized stamping presses by time
series segmentation, anomaly detection, and classification algorithms
Daniel Coelhoa, Diogo Costaa,∗, Eugénio M. Rochab,c, Duarte Almeidad, José P. Santosa

aDepartment of Mechanical Engineering, University of Aveiro, 3810-193, Portugal
bDepartment of Mathematics, University of Aveiro, 3810-193, Portugal

cCenter for Research and Development in Mathematics and Applications (CIDMA), Aveiro, 3810-193, Portugal
dBosch Termotecnologia S.A., 3810-193, Portugal

Abstract

Sheet metal forming tools, like stamping presses, play an ubiquitous role in the manufacture of several products. With increasing
requirements of quality and efficiency, ensuring maximum uptime of these tools is fundamental to marketplace competitiveness.
Using anomaly detection and predictive maintenance techniques, it is possible to develop lower risk and more intelligent approaches
to maintenance scheduling, however, industrial implementations of these methods remain scarce due to the difficulties of obtaining
acceptable results in real-world scenarios, making applications of such techniques in stamping processes seldom found. In this
work, we propose a combination of two distinct approaches: (a) time segmentation together with feature dimension reduction and
anomaly detection; and (b) machine learning classification algorithms, for effective downtime prediction. The approach (a)+(b)
allows for an improvement rate up to 22.971% of the macro F1-score, when compared to sole approach (b). A ROC AUC index
of 96% is attained by using Randomized Decision Trees, being the best classifier of twelve tested. An use case with a decen-
tralized predictive maintenance architecture for the downtime forecasting of a stamping press, which is a critical machine in the
manufacturing facilities of Bosch ThermoTechnology, is discussed.

© 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the International Conference on Industry 4.0 and Smart Manufac-
turing.

Keywords: Predictive Maintenance; Anomaly Detection; Machine Learning; Time Segmentation

1. Introduction

Heavy digitization of industrial practices is leading to an enormous collection of manufacturing data, gathered
across all stages of the productive process through a wide range of sensing and Internet of Things (IoT) devices. Ac-
cess to this information can be utilized towards improving business decisions and production planning, with particular

∗ Corresponding author. Tel.: +351-234-370-359 ; fax: +351-234-382-014.
E-mail address: d.costa@ua.pt

1877-0509© 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the International Conference on Industry 4.0 and Smart Manufacturing.

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 D.Coelho et al. / Procedia Computer Science 00 (2019) 000–000

emphasis on enabling predictive maintenance (PdM) and early anomaly detection (AD) practices, due to the tremen-
dous role maintenance strategies play at determining the success of manufacturing operations. In fact, maintenance
is estimated to amount to 15-60% of all operational costs in manufacturing [1]. Conversely, incorrect or inadequate
maintenance plans compromise a corporation’s entire sustainability model [2], having negative effects such as the
reduction by 5% to 20% of the overall machine productive capacity [3]. PdM aims to address this, as maintenance op-
erations are planned well in advance based on predictions of future equipment health, leading to estimations regarding
the system’s remaining useful life (RUL), thus increasing equipment uptime and availability [3]. Due to the exorbitant
human effort required to create knowledge-driven models for AD, data-driven techniques such as machine learning
(ML) are seeing increasing use in PdM applications [4, 5].

Anomalies are patterns in data that do not conform to expected behavior, taking form of point, contextual, or
collective anomalies [6], commonly being the sole manifestation of performance deficiencies perceivable in data [7].
When dealing with IoT data, additional challenges are imposed, due to the heterogeneous, large-scale data streams
generated, commonly leading to highly correlated and high noise data. These attributes influence the proper choice
of AD techniques [8]. Data-driven techniques, such as ML, are frequently used in PdM applications due to their
capability of extracting relationships in data, otherwise concealed to users, even in high-dimensional and multivariate
data common in industrial scenarios [9]. Yet, choosing a ML methodology that yields satisfactory results for a specific
application is a daunting task, with performance dependent not only on choice of algorithms, but also on the initial
understanding and analysis of the characteristics of datasets, amount of data available, and on the optimization of the
initial stages of the ML pipeline [10, 11]. Stages of data driven PdM are analogous to typical stages of a ML pipeline,
mainly consisting of two phases [12]: the learning process, where the model is trained using historical data; and
inference, where trained models will predict target values based on new data. For each phase, data must be collected
and pre-processed. Moreover, feature engineering techniques are required, extracting new features that will then be
selected based on relevancy. After completing the training process, the goal is to generate a model with the optimal
parameters. ML algorithms are usually classified into three categories [10, 13]: supervised learning, unsupervised
learning, and reinforcement learning. In supervised learning, labeled input datasets exist to train models, consisting
of examples with defined target outputs (labels), that can be taken as an absolute truth. During the training process,
algorithms make predictions on the input data based on known labels, until an acceptable level of accuracy is reached.
Supervised models should be preferred when desired outcomes of the model are known. Typically, they are used
for Classification or Regression problems [10, 14], with both approaches being of value for PdM applications. For
instance, classification problems can determine the probability of a failure within n cycles, while regression problems
predict RUL of components or equipment, until next failure [2, 15].

Due to computational and time constraints, the training process is typically delegated to powerful compute envi-
ronments (cloud-based servers). The inference phase, much lighter on resources, can be deployed within constrained
devices in the edge layer [12, 13]. Large computational capabilities available in cloud computing make it suited for
analysis of collected data through ML and deep learning (DL) algorithms, becoming the current standard for PdM
and AD. However, we face a shift towards more decentralized computing platforms, into distributed systems where
part of the data processing is also transferred to edge devices [13], which is of particular importance in time critical
applications (e.g., PdM), where processing raw data into actionable information should happen in real-time. Cloud
computing paradigms have shown limitations due to the inefficient utilization of network resources, with high band-
width requirements and often leading to redundant data transmission between devices, whilst relying on a single point
of failure [16]. In edge computing (EC), data is directly processed on-board the gathering sensors or on a gateway
physically close to these devices [17]. As processing is done locally, it is more suitable for real-time applications or
when fast decision is needed. The shift of computation towards the network’s edge using typical EC hardware such as
IoT has been discussed, with some advantages including: an increased energy efficiency; lower implementation cost;
higher system reliability; and a decrease in overall system latency [18]. Furthermore, it addresses security and privacy
concerns, usually associated with Cloud platforms, as data does not need to travel to centralized locations [19].

Leveraging IoT technologies, even legacy devices can be integrated into PdM frameworks. This is beneficial to
equipment that plays a pivotal role in manufacturing industries, but is expected to operate for large periods of time,
therefore lacking in modern sensitization technologies. One such example are sheet metal forming (SMF) tools and
presses, that play ubiquitous roles in the manufacturing of several products [20]. Processes like progressive stamp-
ing are widely used in forming industries as they achieve high yield rates with high precision [21]. Keeping this in

D.Coelho et al. / Procedia Computer Science 00 (2019) 000–000 3

mind, the sensorized stamping press use-case is presented, where viability of a PdM system is asserted for use in
a progressive die press at a real manufacturing facility. This mechanical press suffers from high number of break-
downs leading to a common state of unreliable or unavailable machine, creating significant financial impact, as it
hampers the overall efficiency of several of the manufacturer’s assembly lines. Difficulties are further exacerbated by
the age of the equipment, showing low sensitization and restricted networking capabilities. To the best of author’s
knowledge, predictive maintenance applications for industrial metal stamping remain scarce. However, Zehetner et al.
[22] discuss the creation of a digital twin for high-quality sheet metal production, yet, model-driven methods require
high-effort and advanced procedural knowledge. Alternatively, Zhou et al. [21] proposed a method to automatically
monitor missing part faults in progressive stamping processes, using Support Vector Machines (SVM) to identify
critical faulty conditions. Likewise, in [23] Long Short-Term Memory (LSTM) networks were employed for the early
detection of machine failures in a real-world metal stamping equipment use-case, achieving a 99% accuracy in failure
classification, within a 5-minute time-window. Nevertheless, precision alone is an insufficient metric to evaluate a
predictive maintenance platform. For instance, in critical applications, the number of false positives should be lower
than 70% [5], while the number of false negatives is usually much more penalized, and thus, to fully validate im-
plemented solutions, measures such as ROC AUC or F1-score should be calculated. In other industrial applications,
we find a larger number of examples of successful PdM implementations. For instance, Ahmad et al. [24] measured
rotational speed and vibration in rotating machines to classify faulty bearings using SVM, Naı̈ve Bays, and Random
Forests (RF), achieving accuracy values of 78% with SVM. Related work was done by Cakir et al. [25], although
additional features of sound levels and temperature were added, concluding that Decision Trees (DT) frequently rep-
resent the best compromise between inference speed and classification scores. Tree-based algorithms are typically
the best compromise between efficiency and predictive performance. For instance, in [26] RUL was estimated for
real-world use cases, with bagging and boosting algorithms out-performing individual algorithms. Calabrese et al. [4]
predicted failures in woodworking machines using tree-based classification methods, achieving 99.6% recall using
Gradient Boosted Trees (GB). Faults can also be identified using time series forecasting models such as Adaptive
Auto Regressive Integrated Moving Average (ARIMA). Adaptive ARIMA was proposed in [27], a varying window
technique, used to predict the oil contamination value in hydraulic sand molding machinery. Glock [28] also discussed
the value of combining ARIMA with RF techniques in order to increase explainability in fault prediction models.

Novelty of this paper is two-fold: we first propose a decentralized predictive maintenance architecture, compatible
with the use-case manufacturing facility, contemplating all stages of data manipulation, from collection to prediction;
secondly, we introduce a novel approach for ML classification based on feature extraction from preliminary AD
techniques using segmented timeseries. We further demonstrate that using this approach we can greatly increase the
predictive performance of the ML architecture, creating more reliable downtime forecasts for stamping presses, even
when using real-world datasets.

2. Industrial Data Pipeline

Operational equipment data from the press is sent to the Nexeed Manufacturing Execution System (MES), origi-
nating from one of two sources: either by directly monitoring variables within the equipment’s Programmable Logic
Controller (PLC); or through external sensors retrofitted to the press. As such, it is possible for only a small group
of fields to contain missing data in case of miscommunication. Measurements are done immediately after a part is
produced, and over 25 variables are commonly monitored by technical experts. However, from this set, only the most
relevant for determination of mechanical faults are selected. As typical techniques for monitoring mechanical systems
include vibration analysis, oil analysis, and, for rotational components, rotational speed [24, 25, 27], metrics of oil
temperature, oil level, press shaft vibration, and the engine’s actual speed are retrieved and used for examination. Pre-
liminary features also include the pressure on the left and right side connecting rods. As several distinct tools are used
during an ordinary production day, with each one influencing the selected features differently, tool height is tracked
as this is the differential characteristic between tools. A short description of these variables is presented in Table 1.

Further enriching gathered datasets, additional metadata is used, including comprehensive production logs which
detail each shift’s productivity, and, more importantly, manage machine downtimes and planned stops, with unplanned
stops being classified and categorized according to probable cause. For the purposes of predictive maintenance, only
downtimes derived from technical issues are of interest. Technical downtimes are recorded whenever machine or

4 D.Coelho et al. / Procedia Computer Science 00 (2019) 000–000

Table 1. Description of relevant variables measured during sensorized stamping press operation.

Sensor Name Description Unit

OilTemperature Oil temperature in the hydraulic tank ºC
OilLevel Oil level in the hydraulic tank %
EngineActualSpeed Electric motor speed rpm
ShaftVibration Average vibration of crankshaft bearings and connecting rod bearings mg
PressureLeft Hydraulic pressure on the left connecting rod supercharge relief system bar
PressureRight Hydraulic pressure on the right connecting rod supercharge relief system bar
ToolHeight Height of current tool in press mm

tool issues arise that require either intervention from the maintenance team or from the operator. Seeing that this
information is already registered by the technical staff and is properly structured, this can be leveraged by the ML
pipeline creating a dataset labelling channel for use with supervised learning algorithms.

2.1. Implemented Architecture

The data pipeline for the predictive maintenance system is shown in Figure 1. This pipeline receives data in real-
time from the edge device installed on the press (PLC), and, through several data transformations, produces forecasts
identifying whether or not there will be a failure. The differentiating element of the proposed approach to more
conventional ones is the segmentation of time series into two segments, Working and Stopped. Through an analysis of
the press data, it is possible to identify three different operating patterns: there are periods where the press is working;
there are periods where the press is stopped; and there are periods where, although the press is working, it is in a
test cycle. The frequency with which data is sent by the edge device allows to clearly identify these three periods.
Whenever the frequency is close to 1 Hz, the press is working; whenever the frequency is 0 Hz, the press is stopped;
and whenever the frequency is between 0 Hz and 0.5 Hz, the press is in testing periods. The segmentation groups the
testing and downtime periods into the Stopped segment, leaving only data related to the working period in the Working
segment. This segmentation, therefore, can be seen as a filter, once it separates the useful data (Working segment) from
the noisy data (Stopped segment), and in the future, when detecting anomalies and extracting data patterns, only data
belonging to the Working segment will be used, reducing complexity of employed algorithms. Although in this work,
implemented segmentation has focused on the division of the time series into Working and Stopped states, the concept
of segmentation can be further explored. Based on the OilLevel time series, Fig. 3, it is possible to identify two new
states inside the Working state (green background): Warming and Steady. The first state corresponds to the period
when oil starts rising, with the second corresponding to the period when the oil level finally stabilizes. This second
segmentation would distribute the data into more similar segments, further aiding AD. Moreover, the present work
also proposes a synergy between an unsupervised AD algorithm and a supervised ML algorithm, in which, through

Fig. 1. Data pipeline for the predictive maintenance, where blue boxes are micro-services developed for this project.

D.Coelho et al. / Procedia Computer Science 00 (2019) 000–000 5

the analysis of the data belonging to the Working segments, the observations that least resemble the neighborhood
are identified using an unsupervised AD algorithm, and later, this information is used as an additional feature in the
developed pipeline of the supervised ML algorithm.

The remainder of this section explains each component of the presented data pipeline. Near the stamping press
exists a PLC which acquires measurements from sensors installed on the press, and sends data to a REST API. After
acquiring each measurement, the edge device creates a JSON file retaining all information related to the measurement
and sends this file to the REST API, through a POST request. The REST API, when receiving the request, generates a
Kafka message that is forwarded to the Kafka Cluster, where processing will take place. Besides the REST API, there
is an alternative way for ingesting press data into the Kafka Cluster: the edge device sends the press data in a XML
telegram to the MES, and then, a micro-service is responsible for generating a Kafka message for each measurement
data, simulating real-time data transmission. The real processing starts when the Kafka messages reach the Kafka
Cluster. At first, the messages are grouped according to the sensor in which they belong. Then, all groups of messages
are aggregated into 10-second time-windows, and for each aggregation the number of messages is calculated. If all
aggregations have more than 5 messages the Working state is activated, otherwise, the Stopped state is activated.
Through this comparison the frequency explained above is analyzed, and it is possible to activate the Working state
only when the stamping press is truly working. The micro-service responsible for activating each state is called
“Formal State Control”, and besides managing the active state, it also associates each Kafka message that arrives with
the active state. Therefore, as each incoming message is associated with the active state, segmentation is performed in
real-time. Although time series segmentation is running in real-time, the micro-service “Anomaly Detection” only runs
every 10 minutes, and before anomalies are identified it is necessary to perform a segment pre-processing. Initially,
only data belonging to the Working segment of all time series are acquired. Then, this segments must be merged in
order to eliminate empty spaces left by data belonging to the Stopped segments. This merging originates a new base
time, Virtual Base Time, which is common to all merged time series. Subsequently, the method scaling to minimum
and maximum was applied in order to transform all time series values between 0 and 1. After that, we applied Principal
Component Analysis (PCA) as a dimensionality reduction algorithm, reducing the number of features (time series)
to be analyzed. Finally, we applied an unsupervised AD algorithm on the principal components determined in the
previous step. After the AD algorithm detects anomalies in the Virtual Time Base, these are converted to the Real Time
Base and are associated with the observations belonging to the same temporal instant.

The ”ML Models Training” component has access to the ”Database” module, which can be considered as the repos-
itory of the entirety of data flowing through the pipeline. This means that during training of the ML models, historical
data can already be complemented with additional metadata elements such as maintenance logs for the creation and
labelling of features. The first stage of the ML training procedure consists on the creation of an additional feature, de-
rived from the results of the preliminary AD algorithm. Adding to the initial selection of features, this new feature will
be a binary indicator of whether the segmented time series analysis identified any anomalous data segment. Data will
then be aggregated into 10-minute time-windows, and for each one of these time-windows aggregation primitives are
calculated for every feature apart from tool height, namely: total count; mean; maximum; minimum; sum; number of
null values; standard deviation; and the number of consecutive zeros (consecutive null count values). After the feature
extraction phase, the total number of existing features will increase 8-fold. As most of these features are redundant
or of no added value to the ML model, feature selection methods are required. The very choice of feature selection
methods can be done through an iterative process as tuning any other hyperparameter. Yet, for simplicity, initially the
Pearson Correlation Coefficient is calculated between features and those with a correlation threshold superior to 90%
are removed. During the last pre-processing stage, time series data is converted into a ML classification problem for-
mat, however, to maintain the historical relationship between each data entry, shifted features are created containing
the feature value for the two previous time steps. Furthermore, the label of each entry is also shifted back a time step,
so we can classify a fault-event within a 10-minute interval.

The following ML stages are implemented based on software solutions provided by Python’s Scikit-Learn package
module [29]. Training, testing, and validation dataset split proportions can be altered at will. For simulation purposes
the default value is the traditional proportion of a 70%-30% train-test split. Hyperparameters are selected after a
Randomized Search through extensive search spaces for each of the ML algorithms wished to test. At each stage of
the random search, 5-fold cross-validation takes place and the results with the higher macro average F1-score are
selected. This process is repeated for 150 iterations, to ensure more robust results [11]. Any number of metrics can be

6 D.Coelho et al. / Procedia Computer Science 00 (2019) 000–000

used to evaluate model’s performance, however macro F1-score, accuracy, and ROC AUC are particularly pertinent.
This model will be saved and used for inference in ”Maintenance Prediction”. Periodically, models will be retrained
using fresh data and metadata, assuring that models are adjusted to changing environmental and equipment conditions.
In case critical faults are predicted to happen in short order, the ”Alert System” will be activated, and the maintenance
team warned.

3. Main Results

The initial dataset used to simulate the proposed architecture’s operation is comprised of real data and is repre-
sentative of a full manufacturing day. It consists of measurements of the 7 initial features (OilTemperature, OilLevel,
EngineActualSpeed, ShaftVibration, PressureLeft, PressureRight, and ToolHeight) across a 17-hour period, totaling
in 13.568 instances. The dataset was binarized into two classes: working state (0), or failure state (1). The former is
represented by 13.488 data-points, whilst the latter by 80 data-points that describe two occurrences of mechanical
failures. With only 0.59% of instances corresponding to anomalous behavior, this leads to highly unbalanced classes.
However, to maintain solution generalization, and seeing that failures do not follow a steady occurrence pattern (e.g.,
they can either occur near each other, or not at all during prolonged periods of time), no over or under-sampling tech-
niques were used [11]. Anomalous points are automatically labelled through parsing tools developed for the platform.
Maintenance logs are parsed and only machine downtimes corresponding to technical faults are annotated in the ML
dataset. Additionally, as each probable cause of failure is also identified, only mechanical breakdowns that can be
predicted using selected features are labelled as failures. This avoids tainting point labels with faults external to the
equipment, but that caused a production line downtime (e.g., due to power shortages). As such, three types of technical
failures are maintained: mechanical machine failures, tool failures, and obstructions to the press punch.

Fig. 2 shows the Pearson Correlation Coefficient between the 7 initially chosen features. Within this set, it is
clear that only the relationship between OilTemperature and PressureLeft reveals a high correlation value. In fact,
OilTemperature is the feature with the highest correlation with most features, on average; showing also a strong
connection with OilLevel, and to a lesser extent, PressureRight. The remaining features remain with relatively low
correlations, and thus it is expected that each one will provide additional information to the ML model. In Fig. 3
the OilLevel time series is shown, properly segmented in the considered states. Different segments are identified
with a different background color: Working segments are represented with the green color; and Stopped segments
are represented with the red color. Around the 19:50h time-mark, there is a period when the temporal space between
successive observations increases, symbolizing a period where some test is being performed, and, as we can see, the
segmentation acknowledged that period and activated the Stopped state, instead of the Working state. Therefore, when
performing AD, test data will not be used, otherwise, it would be expected the detection of various anomalies in that
period, due to high disparity between the test period and the working period.

When there are few features, in this case, time series, there may be poor results due to the lack of variety in data.
However, when there are many features, there is the possibility that any existing observation would appear different
from the rest due to the high number of comparison features. PCA, as explained before, was used for dimensionality
reduction, after applying a min-max normalization data scaler. Data was reduced to 2 principal components, obtaining
92.60% of the variability contained in the original features. Thus, it is possible to reduce the complexity of data by
losing only 7.4% of information. It is important to note that these values were obtained by simulating the data analysis
at a given moment. Nonetheless, as the analysis of the segments occurs every 10 minutes, each time the analysis
is carried out these percentages are different. Fig. 4 depicts the two principal components used. The first principal
component, PC1, explains 77.89% of the variance of the 7 initial features, whilst the second principal component,
PC2, explains 14.71%. By using these 2 principal components, instead of the full 7 initial features, we increase the
processing speed of AD without losing any significant information.

For the unsupervised AD algorithm, several algorithms were tested, such as Angle-Based Outlier Detection
(ABOD) [30], Stochastic Outlier Selection (SOS) [31] and Copula-Based Outlier Detection (COPOD) [32], however,
the one that yields the best results was COPOD. Fig. 4 also contains the anomalies detected by COPOD, superimposed
on the two principal components. The performance of the preliminary results obtained using only AD techniques on
the segmented time series to predict unplanned stops based on anomalous segments is depicted in Table 2. Despite
initial positive results, this method only points to the possible existence of a failure within the useful forecast period,

D.Coelho et al. / Procedia Computer Science 00 (2019) 000–000 7

without any precise information regarding when machine failure occurs, limiting estimations of component’s RUL.
Furthermore, this does not consider any historical data patterns that point to the state of the machine degradation
leading up to a failure over time. By combining these results and extracting a new feature to be used together with a
strong ML model, we can more accurately identify a failure within a 10-minute time window.

Performance of the strong ML models was evaluated for the testing set that was set aside from the training proce-
dure and thus contained data previously unseen by the models. Several techniques were used to test the influence of the
added segmented time series feature, including: DT, GB, XGBoost, RF, SVM, Gaussian Naive Bayes, K-Neighbors,
Logistic Regression, Multi-layer Perceptrons, Naive Bayes, Randomized DT, and Regularized Linear models. All al-
gorithms were implmented using Scikit-Learn [29] version 0.24.2 and PyTorch [33] version 1.9.0. They were tested
for both scenarios, with and without the segmented time series feature. Accuracy, ROC AUC, and macro F1-score
were calculated for each iteration of the randomized search and results are shown in Table 3. The results clearly point
to an improvement in performance after adding the segmented time feature, for practically all algorithms and metrics.
Randomized DT in particular were the best performers with segmentation, achieving a macro F1-score of 91.66%,
an extremely satisfactory value, taking into consideration the deep unbalance present in the fairly small dataset. Reg-

Fig. 2. Correlation matrix of the most relevant features. Fig. 3. Time series OilLevel segmented

Fig. 4. Anomalies detected using two principal components

Table 2. Calculated performance metrics for the segmented time series anomaly detection algorithm.

Accuracy Precision Recall F1-score

0.939 0.500 1.000 0.667

8 D.Coelho et al. / Procedia Computer Science 00 (2019) 000–000

Table 3. Calculated performance metrics for the testing set, where the values are the average of 5 runs.

Accuracy ROC AUC Macro F1

Method without seg. with seg. without seg. with seg. without seg. with seg.

Decision Trees 77.42% 90.63% 77.35% 83.72% 77.04% 85.52%
Gaussian Naive Bayes 80.65% 81.50% 80.13% 92.00% 80.13% 84.54%
Gradient Boosting 77.42% 93.75% 74.15% 90.86% 74.80% 90.86%
K-Neighbors 74.19% 90.63% 71.37% 88.86% 71.82% 86.94%
Logistic Regression 74.20% 71.88% 71.37% 66.67% 71.81% 63.95%
Multi-layer Perceptron / LBFGS 77.42% 84.34% 73.08% 74.57% 73.44% 75.87%
Naive Bayes / Multivariate Bernoulli 77.42% 78.12% 76.28% 80.86% 75.54% 73.80%
Random Forest 70.97% 87.15% 68.59% 71.43% 68.90% 76.29%
Randomized Decision Trees1 80.65% 93.75% 77.99% 96.00% 78.86% 91.66%
Regularized Linear models / SGD2 83.87% 81.25% 82.91% 88.00% 83.24% 78.18%
Support Vector Machine 80.65% 87.50% 76.92% 76.75% 77.86% 79.48%
XGBoost 74.19% 87.50% 69.77% 85.71% 70.48% 86.67%
1 Bootstrap=True, criterion=entropy, max features=0.4, min samples leaf=5, min samples split=10, n estimators=100.
2 Stacking of 2 models with alpha=0.001, eta 0=[1.0,0.01], fit intercept=[True,False], l1 ratio=[0.0,0.25], penalty=elasticnet,

learning rate=invscaling, loss=squared hinge, power t=[10.0,0.5].

ularized Linear models showed the best performance for the dataset without segmentation, falling short of several
tree-based algorithms using segmentation. In fact, tree-based are generally the ones that most benefit from the ad-
ditional feature, with DT, GB, RF, Randomized DT, and XGBoost, seeing macro F1-score percentage increases of
11.00%, 21.47%, 10.73%, 16.23%, and 22.97%, respectively. XGBoost, although not the best performer overall, saw
the highest F1-score improvement, and in Fig. 5 we see the importance for the top-10 features acting on the model,
where the sum of anomalies contained in the 10-minute aggregation window exerts a much higher influence over the
model comparatively to other features.

Fig. 5. Feature importance (gain) of top-10 features acting in XGBoost model

4. Conclusions

In this paper, we proposed the combination of time segmentation with feature reduction and AD, together with
strong ML classification algorithms, to be used for downtime prediction in sheet metal forming tools (sensorized
stamping presses). Furthermore, we proposed a comprehensive architecture for implementing predictive maintenance
aimed at solving the real-world use-case at Bosch ThermoTechnology. First, the relevant state-of-art was discussed
and advantages of PdM applications shown. Moreover, preliminary analysis of data gathered for the use-case revealed
a deeply unbalanced dataset, that proves to be challenging to more conventional ML techniques. During result dis-
cussion, we showed the successful integration of time series segmentation into strong ML models, with a percentage
increase of 16.23% in macro F1-score for the proposed approach, compared to a common ML application.

However, a few limitations of the platform are clear, and highlighted as future work and research directions.
Namely, the used dataset is fairly small and proper validation of the proposed solution still requires more data. Addi-

D.Coelho et al. / Procedia Computer Science 00 (2019) 000–000 9

tionally, the implemented segmentation has several hyperparameters, such as, aggregation time, minimum number of
messages in the aggregation to activate the Working status, time interval between each anomaly detection, maximum
and minimum virtual time admissible in the anomaly detection, and proportion of anomalies in the dataset. The exor-
bitant number of possible combinations demands the development of an optimization algorithm, that would select the
conjunction of hyperparameters that maximizes efficiency of a specific metric, namely F1-score. Moreover, it would
be of use a platform capable of performing the segmentation with a time reduction factor, enabling data segmentation
representative of several days in just a few hours. This is also fundamental for the optimization algorithm, otherwise,
time taken in hyperparameter tuning would be unmanageable. It would also be of interest to evolve the segmentation
performed into two segmentation phases, the first phase segmenting the time series into Working and Stopped, and
the second phase, segmenting the Working segments into Warming and Steady segments. This way, data would be
grouped into more similar segments, expecting a sensitivity increase of the AD algorithm. In case different states must
be analyzed, instead of using a single ML model we could use one ML model for each state. Thus, depending on the
active state, the forecast is issued by the ML model associated with the active state.

Although several improvements are to be made, if the developed platform had been in production on the studied
day, at its current form, the press would have worked an additional 4 hours, 55 minutes, and 6 seconds (28.9% of the
full manufacturing day), vastly increasing productivity. Furthermore, results obtained by the predictive platform can
be used to conduct real-time cross-correlation between machine failures and nefarious operational practices that affect
equipment health, that would stand otherwise hidden or hard to detect.

Acknowledgements. The present study was developed in the scope of the Project Augmented Humanity (PAH)
[POCI-01-0247-FEDER-046103], financed by Portugal 2020, under the Competitiveness and Internationalization Op-
erational Program, the Lisbon Regional Operational Program, and by the European Regional Development Fund. The
second author has a PhD grant supported by PAH. The third author was partially supported by the Center for Research
and Development in Mathematics and Applications (CIDMA), through the Portuguese Foundation for Science and
Technology, reference UIDB/04106/2020. The fourth author was supported by Bosch Termotecnologia.
Data availability statement. The data sets used to obtain the results are confidential information of Bosch company
manufacturing system, so they are not publicly available.

References

[1] T. Zonta, C. A. da Costa, R. da Rosa Righi, M. J. de Lima, E. S. da Trindade, G. P. Li, Predictive maintenance in the Industry 4.0: A systematic
literature review, Computers and Industrial Engineering 150 (April 2019) (2020) 106889. doi:10.1016/j.cie.2020.106889.
URL https://doi.org/10.1016/j.cie.2020.106889

[2] M. Nacchia, F. Fruggiero, A. Lambiase, K. Bruton, A systematic mapping of the advancing use of machine learning techniques for predictive
maintenance in the manufacturing sector, Applied Sciences (Switzerland) 11 (6) (2021) 1–34. doi:10.3390/app11062546.

[3] C. Colemen, S. Damodaran, M. Chandramoulin, E. Deuel, Making maintenance smarter, Deloitte University Press (2017) 1–21.
[4] M. Calabrese, M. Cimmino, F. Fiume, M. Manfrin, L. Romeo, S. Ceccacci, M. Paolanti, G. Toscano, G. Ciandrini, A. Carrotta, M. Men-

goni, E. Frontoni, D. Kapetis, SOPHIA: An event-based IoT and machine learning architecture for predictive maintenance in industry 4.0,
Information (Switzerland) 11 (4) (2020) 1–17. doi:10.3390/INFO11040202.

[5] B. Steenwinckel, D. De Paepe, S. Vanden Hautte, P. Heyvaert, M. Bentefrit, P. Moens, A. Dimou, B. Van Den Bossche, F. De Turck, S. Van
Hoecke, F. Ongenae, FLAGS: A methodology for adaptive anomaly detection and root cause analysis on sensor data streams by fusing expert
knowledge with machine learning, Future Generation Computer Systems 116 (2021) 30–48. doi:10.1016/j.future.2020.10.015.
URL https://doi.org/10.1016/j.future.2020.10.015

[6] V. Chandola, A. Banerjee, V. Kumar, Anomaly Detection: A Survey, ACM Comput. Surv. 41 (3) (2009). doi:10.1145/1541880.1541882.
URL https://doi.org/10.1145/1541880.1541882

[7] H. H. W. J. Bosman, Anomaly detection in (networked) embedded systems, Technische Universiteit Eindhoven, 2016.
[8] M. Mohammadi, A. Al-Fuqaha, S. Sorour, M. Guizani, Deep learning for IoT big data and streaming analytics: A survey, arXiv 20 (4) (2017)

2923–2960.
[9] T. P. Carvalho, F. A. Soares, R. Vita, R. d. P. Francisco, J. P. Basto, S. G. Alcalá, A systematic literature review of machine learning methods

applied to predictive maintenance, Computers and Industrial Engineering 137 (April) (2019) 106024. doi:10.1016/j.cie.2019.106024.
URL https://doi.org/10.1016/j.cie.2019.106024

[10] Z. M. Çinar, A. A. Nuhu, Q. Zeeshan, O. Korhan, M. Asmael, B. Safaei, Machine learning in predictive maintenance towards sustainable smart
manufacturing in industry 4.0, Sustainability (Switzerland) 12 (19) (2020). doi:10.3390/su12198211.

[11] O. Gómez-Carmona, D. Casado-Mansilla, F. A. Kraemer, D. López-de Ipiña, J. Garcı́a-Zubia, Exploring the computational cost of machine
learning at the edge for human-centric Internet of Things, Future Generation Computer Systems 112 (2020) 670–683. doi:10.1016/j.

https://doi.org/10.1016/j.cie.2020.106889
https://doi.org/10.1016/j.cie.2020.106889
https://doi.org/10.1016/j.cie.2020.106889
https://doi.org/10.1016/j.cie.2020.106889
https://doi.org/10.3390/app11062546
https://doi.org/10.3390/INFO11040202
https://doi.org/10.1016/j.future.2020.10.015
https://doi.org/10.1016/j.future.2020.10.015
https://doi.org/10.1016/j.future.2020.10.015
https://doi.org/10.1016/j.future.2020.10.015
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1016/j.cie.2019.106024
https://doi.org/10.1016/j.cie.2019.106024
https://doi.org/10.1016/j.cie.2019.106024
https://doi.org/10.1016/j.cie.2019.106024
https://doi.org/10.3390/su12198211
https://doi.org/10.1016/j.future.2020.06.013
https://doi.org/10.1016/j.future.2020.06.013
https://doi.org/10.1016/j.future.2020.06.013

10 D.Coelho et al. / Procedia Computer Science 00 (2019) 000–000

future.2020.06.013.
URL https://doi.org/10.1016/j.future.2020.06.013

[12] W. Zhang, D. Yang, H. Wang, Data-Driven Methods for Predictive Maintenance of Industrial Equipment: A Survey, IEEE Systems Journal
13 (3) (2019) 2213–2227. doi:10.1109/JSYST.2019.2905565.

[13] L. Erhan, M. Ndubuaku, M. Di Mauro, W. Song, M. Chen, G. Fortino, O. Bagdasar, A. Liotta, Smart anomaly detection in sensor systems: A
multi-perspective review, Information Fusion 67 (June 2020) (2021) 64–79. arXiv:2010.14946, doi:10.1016/j.inffus.2020.10.001.
URL https://doi.org/10.1016/j.inffus.2020.10.001

[14] A. Dogan, D. Birant, Machine learning and data mining in manufacturing, Expert Systems with Applications 166 (February 2019) (2021)
114060. doi:10.1016/j.eswa.2020.114060.
URL https://doi.org/10.1016/j.eswa.2020.114060

[15] J. Dalzochio, R. Kunst, E. Pignaton, A. Binotto, S. Sanyal, J. Favilla, J. Barbosa, Machine learning and reasoning for predictive maintenance
in Industry 4.0: Current status and challenges, Computers in Industry 123 (2020) 103298. doi:10.1016/j.compind.2020.103298.
URL https://doi.org/10.1016/j.compind.2020.103298

[16] M. Ahmed, R. Mumtaz, S. M. H. Zaidi, M. Hafeez, S. A. R. Zaidi, M. Ahmad, Distributed fog computing for internet of things (Iot) based
ambient data processing and analysis, Electronics (Switzerland) 9 (11) (2020) 1–20. doi:10.3390/electronics9111756.

[17] L. Greco, G. Percannella, P. Ritrovato, F. Tortorella, M. Vento, Trends in IoT based solutions for health care: Moving AI to the edge, Pattern
Recognition Letters 135 (2020) 346–353. doi:10.1016/j.patrec.2020.05.016.

[18] R. Sanchez-Iborra, A. F. Skarmeta, TinyML-Enabled Frugal Smart Objects: Challenges and Opportunities, IEEE Circuits and Systems Maga-
zine 20 (3) (2020) 4–18. doi:10.1109/MCAS.2020.3005467.

[19] G. Mohindru, K. Mondal, H. Banka, Internet of Things and data analytics: A current review, Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery 10 (3) (2020) 1–27. doi:10.1002/widm.1341.

[20] C. J. Jonsson, R. Stolt, F. Elgh, Stamping tools for sheet metal forming: Current state and future research directions, Advances in Transdisci-
plinary Engineering 12 (2020) 281–290. doi:10.3233/ATDE200087.

[21] C. Zhou, K. Liu, X. Zhang, W. Zhang, J. Shi, An Automatic Process Monitoring Method Using Recurrence Plot in Progressive Stamping
Processes, IEEE Transactions on Automation Science and Engineering 13 (2) (2016) 1102–1111. doi:10.1109/TASE.2015.2468058.

[22] C. Zehetner, C. Reisinger, W. Kunze, F. Hammelmüller, R. Eder, H. Holl, H. Irschik, High-quality sheet metal production using a model-based
adaptive approach, Procedia Computer Science 180 (2019) (2021) 249–258. doi:10.1016/j.procs.2021.01.162.
URL https://doi.org/10.1016/j.procs.2021.01.162

[23] F. Alves, H. Badikyan, H. J. Antonio Moreira, J. Azevedo, P. M. Moreira, L. Romero, P. Leitao, Deployment of a Smart and Predictive
Maintenance System in an Industrial Case Study, IEEE International Symposium on Industrial Electronics 2020-June (2020) 493–498. doi:
10.1109/ISIE45063.2020.9152441.

[24] B. Ahmad, R. Forest, Intelligent Predictive Maintenance Model for Rolling Components of a Machine based on Speed and Vibration (2021)
459–464.

[25] M. Cakir, M. A. Guvenc, S. Mistikoglu, The experimental application of popular machine learning algorithms on predictive maintenance
and the design of IIoT based condition monitoring system, Computers and Industrial Engineering 151 (October 2020) (2020) 106948. doi:

10.1016/j.cie.2020.106948.
URL https://doi.org/10.1016/j.cie.2020.106948

[26] S. Ayvaz, K. Alpay, Predictive maintenance system for production lines in manufacturing: A machine learning approach using IoT data in
real-time, Expert Systems with Applications 173 (January) (2021) 114598. doi:10.1016/j.eswa.2021.114598.
URL https://doi.org/10.1016/j.eswa.2021.114598

[27] T. Roosefert Mohan, J. Preetha Roselyn, R. Annie Uthra, D. Devaraj, K. Umachandran, Intelligent machine learning based total productive
maintenance approach for achieving zero downtime in industrial machinery, Computers Industrial Engineering 157 (June 2020) (2021) 107267.
doi:10.1016/j.cie.2021.107267.
URL https://doi.org/10.1016/j.cie.2021.107267

[28] A. C. Glock, Explaining a Random Forest with the Difference of Two ARIMA Models in an Industrial Fault Detection Scenario, Procedia
Computer Science 180 (2019) (2021) 476–481. doi:10.1016/j.procs.2021.01.360.
URL https://doi.org/10.1016/j.procs.2021.01.360

[29] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: Machine Learning in Python, Journal of Machine Learning
Research 12 (2011) 2825–2830.

[30] H. P. Kriegel, M. Schubert, A. Zimek, Angle-based outlier detection in high-dimensional data, Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (2008) 444–452doi:10.1145/1401890.1401946.

[31] J. Janssens, F. Huszar, E. Postma, H. van den Herik, Stochastic Outlier Selection (2012).
[32] Z. Li, Y. Zhao, N. Botta, C. Ionescu, X. Hu, COPOD: Copula-based outlier detection, Proceedings - IEEE International Conference on Data

Mining, ICDM 2020-Novem (September) (2020) 1118–1123. arXiv:2009.09463, doi:10.1109/ICDM50108.2020.00135.
[33] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang,

Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala, Pytorch: An imperative style, high-performance deep
learning library, in: H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, R. Garnett (Eds.), Advances in Neural Information
Processing Systems 32, Curran Associates, Inc., 2019, pp. 8024–8035.
URL http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.

pdf

https://doi.org/10.1016/j.future.2020.06.013
https://doi.org/10.1016/j.future.2020.06.013
https://doi.org/10.1016/j.future.2020.06.013
https://doi.org/10.1109/JSYST.2019.2905565
https://doi.org/10.1016/j.inffus.2020.10.001
https://doi.org/10.1016/j.inffus.2020.10.001
http://arxiv.org/abs/2010.14946
https://doi.org/10.1016/j.inffus.2020.10.001
https://doi.org/10.1016/j.inffus.2020.10.001
https://doi.org/10.1016/j.eswa.2020.114060
https://doi.org/10.1016/j.eswa.2020.114060
https://doi.org/10.1016/j.eswa.2020.114060
https://doi.org/10.1016/j.compind.2020.103298
https://doi.org/10.1016/j.compind.2020.103298
https://doi.org/10.1016/j.compind.2020.103298
https://doi.org/10.1016/j.compind.2020.103298
https://doi.org/10.3390/electronics9111756
https://doi.org/10.1016/j.patrec.2020.05.016
https://doi.org/10.1109/MCAS.2020.3005467
https://doi.org/10.1002/widm.1341
https://doi.org/10.3233/ATDE200087
https://doi.org/10.1109/TASE.2015.2468058
https://doi.org/10.1016/j.procs.2021.01.162
https://doi.org/10.1016/j.procs.2021.01.162
https://doi.org/10.1016/j.procs.2021.01.162
https://doi.org/10.1016/j.procs.2021.01.162
https://doi.org/10.1109/ISIE45063.2020.9152441
https://doi.org/10.1109/ISIE45063.2020.9152441
https://doi.org/10.1016/j.cie.2020.106948
https://doi.org/10.1016/j.cie.2020.106948
https://doi.org/10.1016/j.cie.2020.106948
https://doi.org/10.1016/j.cie.2020.106948
https://doi.org/10.1016/j.cie.2020.106948
https://doi.org/10.1016/j.eswa.2021.114598
https://doi.org/10.1016/j.eswa.2021.114598
https://doi.org/10.1016/j.eswa.2021.114598
https://doi.org/10.1016/j.eswa.2021.114598
https://doi.org/10.1016/j.cie.2021.107267
https://doi.org/10.1016/j.cie.2021.107267
https://doi.org/10.1016/j.cie.2021.107267
https://doi.org/10.1016/j.cie.2021.107267
https://doi.org/10.1016/j.procs.2021.01.360
https://doi.org/10.1016/j.procs.2021.01.360
https://doi.org/10.1016/j.procs.2021.01.360
https://doi.org/10.1145/1401890.1401946
http://arxiv.org/abs/2009.09463
https://doi.org/10.1109/ICDM50108.2020.00135
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

