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ABSTRACT 

In this chapter, a comprehensive description of a generic framework aimed at solving various predictive 

data-driven related use cases, occurring in the manufacturing industry, is provided. The framework is 

rooted in a general mathematical model so called Queue Directed Graph (QDG). With the aid of QDGs 

and containerized microservices implementations, the typology of the system is analyzed and real use 

cases are explained. The goal is for this framework to be able to be used to all use cases which fit in this 

typology. As an example, a data generation distribution model is proposed, the parameter stability and 

predictive robustness is studied, and automated machine learning approaches are discussed to predict the 

throughput time of products in a manufacturing production line just by knowing the processing time in 

their first stations. 

Keywords: Industry 4.0, Manufacturing Production Line, Machine Learning, AutoML, Processing Time 

Distribution, Queue Directed Graph, Parameter Stability, Predictive Robustness, Classifier's Overfitting 



INTRODUCTION  

A characteristic aim in the Manufacturing Industry is to optimize the operations in and around production 

lines (PL). For instance, simulation has been one of the most widely used techniques as shown in Russkikh 

(2020). Most of these sorts of problems, however, fit into a much broader category and with the right 

assumptions it is possible to create a model just generic enough to be able to solve a myriad of problems 

around this abstract entity, being it a PL, a value stream or a material delivery flow. 

 

In order to understand the productive process, it is very common for organizations to resort to KPIs (Key 

Performance Indicators) and metrics. One of the most well-known is the throughput time. The throughput 

time describes the amount of time that it takes for a product to go through the production line. It can be 

calculated as the end processing minus the start processing time. Time based metrics are used extensively 

because they contain within other aspects of the process which would be hidden by other metrics. For 

example, if the throughput time exceeds some expected value, then it may reveal other underlying factors 

as the fact that not enough components had being fed to the PL, so the process will be starving at some 

point; the experience of the workers; a certain product family which is more complex to produce among 

others. 

 

In Figure 1, a practical example of this calculation is featured. In this image, there is a schematical 

representation of a PL with a total of 5 workstations. The throughput time is calculated as the sum of all the 

processing times as duration of time the products spent in each workstation. Notice how there might be a 

trend already at the first 3 stations of the PL where Product 2 takes systematically more time than Product 

1. This sort of trend is precisely what a prediction solution would like to catch and to see whether, from a 

small number of firsts stations of the PL, a significant trend in the throughput time can be inferred. With 

this information, one could classify the parts prematurely as efficient (such as Product 1) or non-efficient 

(as Product 2). 

 

Figure 1. Schematic representation of the throughput time calculation in a production line. 

 

 
 

 

The focus of this work is to construct a binary classifier where, given a certain effectiveness threshold plus 

the processing time at the first N stations, i.e., a small amount compared to the total size of the line, the 

solution is able to predict the outcome of the throughput time class. 

 

In order to have an approach which would fit PLs in a broader sense, and even other types of systems with 

a similar topology, it is necessary to propose a generic model. The example that was seen above is actually 

an over-simplification of such manufacturing processes. For instance, it is considered that the throughput 

time is simply a sum over the different processing times in each workstation. However, there are actually 

waiting times in between the stations because they are not always available to start processing parts since 

they may be processing still the previous part. For this reason, the concept of queues will also be introduced 

later on. Queues are entities where parts wait for their turn to be processed in a FIFO (First In, First Out) 

sequence. 

 



Queues make the system more realistic yet there are other aspects to be taken into consideration such as 

reworks (repeating the process of a part more than once in the same station). In these scenarios, the part 

does not go back to the queue as this would be a waste of time for the process itself. However, this sort of 

changes to the usual topology must be taken into account.  

 

A generic model allows one to calculate a myriad of different metrics which can occur at various levels. 

They can occur at the station level, for instance, the processing time, i.e., the time it take for the station to 

process one part. They can also occur at the transition level. One example is the waiting time, the time it 

takes for the part to end its processing in station N and to start its processing in station N+1. Finally, there 

are the so-called global metrics. The throughput time is an example of such a metric since it concerns the 

global entity, i.e., the PL. This classification is valid for metrics from the workstations point of view. There 

are also other types of metrics which can be calculated from the perspective of the part rather than that of 

the workstation. With this sort of generalization, this model would be valid not only for PLs, but for other 

systems which follow the same logic. These could be, for instance, trucks delivering goods or invoices 

flowing from supplier to customer. 

 

The metrics described above can then either be presented through a dashboard or through an Early Warning 

System (EQS) which would notify the PL’s Team Leaders of complications for a certain part. With this 

information, reactive measures could be taken immediately. The idea of doing the prediction for the 

throughput time metric arises precisely of the need of having enough time available to be able to take action 

in a meaningful timeframe. The main goal is also that the metrics can be reused and used for other higher-

level applications, i.e., metrics calculation that are done on top of existing ones. This abstraction allows the 

calculation of other metrics in a much easier way since the baseline already contains processed information 

one can use. 

 

In the next section, some use cases found in the literature will be reviewed, along with the Machine Learning 

(ML) techniques that can be leveraged to solve such issues. Afterwards, the focus will shift towards 

presenting a mathematical data model and its characteristics. Defining a precise model is quite relevant to 

ensure that all assumptions are fulfilled by the real data collected and that the model accounts for particular 

phenomena of the physical process, that in several models are simply not taken into account. Once this 

theoretical construct has been properly introduced, the robustness of the method will be tested through a 

series of experiments using simulated data. With these results as basis, the method is applied to a real PL. 

Subsequently, the authors dwell on the challenges of implementing such use cases in an organization and 

propose some suggestions to tackle them. The chapter ends with the conclusion and future research 

directions to be followed. 

BACKGROUND 

The usage of mathematical methods and Artificial Intelligence (AI) is becoming an increasingly studied 

subject in the academia in recent years. However, it can be quite challenging for executive and upper-level 

management to pinpoint actual usages which can translate this premise into actual value for their 

organizations. A more detailed look into the challenges that these entities are facing can be found near the 

end of the chapter.  

 

Columbus (2019) presents different examples of the utilization of ML techniques to the added benefit of 

manufacturing corporations. These range from supply chain, to process or product design optimization. 

Even more qualitative areas such as Human Resources can benefit tremendously from these applications.  

 

However, the real adoption rate is still reduced. According to Lee (2020), there are few articles that focus 

on direct applications on ML techniques at the enterprise level. The ones available focus mainly in the 

banking and finance sector. These are the sectors that are more heavily invested in these technologies. In 



industrial settings, the most widely known applications are generally reserved to the tuning of process 

parameters, as discussed in Chen (2017) and Weichert (2019). These can be applied in a wide range of 

processes such as Welding or Plastic Injection Molding. Still, the overall scenario in the entrepreneurial 

realm is that there are few actual deployments and most of them are still in a pilot phase. 

 

Another important aspect mentioned in the literature is the process of algorithm selection to solve a concrete 

problem. This is an aspect the authors are deeply interested in tackling and one reason why the development 

of the framework at hand is being done using an agile approach. This way one can clearly define the 

characteristics that a problem must have in order to fit in a certain category. This is a widely known issue, 

that there is not one single algorithm that proves to be a good fit for all problems. This limitation is explored 

extensively in Pedro Domingos' book, The Master Algorithm (Domingos, 2017). 

 

With this context in mind, one can still find some examples in the recent literature which address some 

areas which will be in focus during this chapter. One of them are Random Forests classifiers which are 

explored in Wu (2017). In this article, the authors compare the performance of Artificial Neural Networks, 

Support Vector Regression and Random Forests since in previous literature, there was a good performance 

of decision trees which are closely related method to Random Forests. Using Random Forests proved a 

reliable solution according to the author’s conclusion. The method was able to predict accurately the wear 

of the tool in milling processes. Another completely different application of this algorithm will be explored 

in this work. 

 

In more specific terms, this chapter covers the usage of a graph based, generic approach for solving a 

number of different problems. Here, the approach will be focused in the prediction of the throughput time. 

In Backus (2006), the focus was on predicting the cycle time of intermediate cycle times in the semi-

conductor industry. One of the issues the researchers ran into was the influence of outliers in the predictive 

model. For this reason, the batches which exhibited a deviating behavior were excluded from the scope. 

The authors concluded that a real time application would be a desirable next step. These two questions, 

how to treat the outliers and how to use the model in real time are important focus points in this work. 

 

This study will also cover the usage of Automated ML (AutoML) as a way of achieving high performance 

results. In Tušar (2017), overfitting is referred and conclusions state that it can be reduced by using tree 

ensembles, giving as an example the Random Forests model. However, AutoML is known for being 

intrinsically an overfitting strategy, since a heavy number of combinations and optimizations are ran in 

order to achieve the best possible results. It will be assessed whether this characteristic can be used to one’s 

advantage later. 

 

DATA MODELLING 

A production line (PL) may be modeled in quite different ways, depending on the goal of the study. 

Common ways to formally describe workflow processes include Petri net variants or activity diagram 

variants. Even though they show similarities, fundamental differences turn their applications into PLs too 

complex or lacking relevant features, see Eshuis and Wieringa (2003). Several of these models assume that 

parts are produced or consumed by actors and do not incorporate (explicitly) the notion of layers of queues 

and their associated nodes, see Buck and Lee (1993).  

 

For a better understand of the problem, a mathematical structure for modelling a graph with queues is 

introduced, allowing to incorporate the assumptions and metadata that is common in a PL. At its core, a 

graph is merely a set of nodes and arcs, which can easily be associated with physical entities (workstations, 

people or servers). The nodes are connected between one another by arcs, describing paths of product 



transitions. Nodes and arcs are the infrastructure but truly important are the products, the data that they 

have associated, and data operations that can be applied in each component of the graph. 

 

Figure 2. Schematic representation of a production line, its stations and products flowing in it. 

 

 
 

In Figure 2, nodes (identified from 𝑁1 to 𝑁9) represent transformation stations in the PL, tokens (small dark 

circles with numbers from 01 to 12) represent parts or materials moving in the PL, queues (identified by 𝑄1 

to 𝑄10) are intermediate locations where tokens wait for the respective station to process them, 𝑁0 is the 

starting location of tokens, 𝑁10 is the final location of tokens, and direct arrows represent transitions and 

component interconnections. Dotted arcs represent the particular situation where a token is re-worked in 

the same node without any other token being worked in the station. Dashed arcs represent the situation 

where tokens do not follow the standard layout of the PL, jumping to a different station or being removed 

from the production area (e.g., anomaly detection and removal). 

 

General Model for a Manufacturing Production Line 

To have a precise definition for the problem, with similar representation as Figure 2, the mathematical 

notion of a Queue Directed Graph (QDG) is introduced as an ordered tuple (𝑁, 𝑄, 𝐴, 𝐵, 𝐶, 𝐾, 𝑊, 𝐺, 𝑑𝑡𝐵, 𝑑𝑡𝐸) 

where:  

 

1. N is a list whose elements are called nodes with 𝑠𝑁 + 1 elements and indices in the set 𝑖 ∈ {0, … , 𝑠𝑁}; 
 

2. Q is a list of 𝑠𝑄 first-in/first-out queues (FIFO queues) with no capacity limit and indices in the set 𝑗 ∈

{1, … , 𝑠𝑄}, 𝑠𝑄 = 𝑠𝑁; 

 

3. A is a set with a minimum of 𝑠𝑁 directed arcs as pairs of node-queue of the form (𝑁𝑖 , 𝑄𝑗); 

 

4. B is a set of 𝑠𝑁 directed arcs as pairs of queue-node of the form (𝑄𝑗 , 𝑁𝑖), which associates one queue to 

its corresponding node for all nodes in the graph except for 𝑁0; 
 

5. K is a list of 𝑠𝐾 + 1 tokens with indices in the set 𝑘 ∈ {0, … , 𝑠𝐾}; 
 

6. C is a matrix of integers where 𝑐𝑖,𝑗 accounts for the number of tokens that have transverse the arc (𝑁𝑖 , 𝑄𝑗); 

 



7. W is a list of tuples with the form 𝑊𝑘 = (𝑑𝑖𝑛𝑤 , 𝑑𝑜𝑢𝑡𝑤 , 𝑁𝑤 , 𝐾𝑤, 𝑃𝑤 , 𝐺𝑤) with indices in the set 𝑤 ∈
{0, … , 𝑠𝑊}, where 𝑑𝑖𝑛𝑤 is the timestamp when the token 𝐾𝑤 enters the node 𝑁𝑤, 𝑑𝑜𝑢𝑡𝑤 is the timestamp 

when token 𝐾𝑤 leaves 𝑁𝑤, 𝑑𝑖𝑛𝑤+1 ≥ 𝑑𝑖𝑛𝑤, 𝑃𝑤 is the duration of time that the token 𝐾𝑤 was in 𝑁𝑤 before 

leaving, and 𝐺𝑤 is a set of words used for Root Cause Analysis (which may be empty) associated with the 

processing time; 

 

8. G is a set of 𝑠𝐺 tags (words) that are used to classify 'situations' (this set can be empty); 

 

9. The operations on the QDG are performed in the interval [𝑑𝑡𝐵, 𝑑𝑡𝐸];  
 

10. Tokens do not spend time moving on arcs (i.e. they move instantaneously); 

 

11. The node 𝑁0 is the starting node and node 𝑁𝑠𝑁
 is the ending node; 

 

12. Tokens can only enter through 𝑁0, can leave from 𝑁𝑠𝑁
, and cannot enter the graph more than once. 

 

Note that, because of assumptions 3 and 4, there are no arcs from nodes to nodes or queues to queues. 

Moreover, because in assumption 3 the cardinality of A is not fixed, the graph transition may not be 

deterministic (i.e. tokens may follow different paths on exiting a node). Each token defines a path in the 

QDG, which indirectly is coded in the matrix C, from where one may associate to each arc a transition 

probability. This opens the possibility to apply Stochastic and Probabilistic Methods to QDG (e.g. Markov 

Chains or Bayesian Networks).  Furthermore, the graph in Figure 2 is not a QDG, since it has node loops 

(i.e. fails assumption 12), but may be solved through operation 𝐸1.  

 
(𝐸1) As stated above, in practical situations a token (i.e. component/material/product) can be re-worked at 

the same node (i.e. station in the PL) without any other token entering the node. This situation is not directly 

compatible with a QDG, but can be treated by supposing that two consecutive entries in W as 

(𝑑𝑖𝑛𝑤 , 𝑑𝑜𝑢𝑡𝑤 , 𝑁𝑤 , 𝐾𝑤 , 𝑃𝑤 , 𝐺𝑤) and (𝑑𝑖𝑛𝑤+1, 𝑑𝑜𝑢𝑡𝑤+1, 𝑁𝑤 , 𝐾𝑤 , 𝑃𝑤+1, 𝐺𝑤+1) are replaced by the entry 
(𝑑𝑖𝑛𝑤 , 𝑑𝑜𝑢𝑡𝑤+1, 𝑁𝑤 , 𝐾𝑤 , 𝑃𝑛𝑒𝑤 , 𝐺𝑛𝑒𝑤), where 𝑃𝑛𝑒𝑤 = 𝑑𝑜𝑢𝑡𝑤+1 − 𝑑𝑖𝑛𝑤 + 𝑃𝑤  and 𝐺𝑛𝑒𝑤 = 𝐺𝑤 ∪ 𝐺𝑤+1.  

 
(𝐸2) Human operations may break predefined rules as the FIFO order of a queue. In such case and to 

comply to a QDG, the situation is reported and the involved tokens are completely removed from the data 

set for this study. 

 

From now on, the authors assume that the above situations are treated by the operations 𝐸1 − 𝐸2, so one 

can have a well-defined QDG as in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 3. Schematic representation of a Queue Directed Graph (QDG) with the associated metrics 

calculations. 

 

 
 

This mathematical formulation is quite general and can be applied to many real scenarios, which will be 

explored in future publications. 

 

The QDG structure, along with an integration into a technology infrastructure, allows to define metric 

levels. Metric levels are increasing self-contained layers where metrics (e.g. KPIs) are defined from metrics 

of previous levels. In the metric layer 0 sits a QDG. The authors now provide an example of two metric 

layers.  

 

Metrics level 1: Considering the existence of a well-defined 𝑄𝐷𝐺 = (𝑁, 𝑄, 𝐴, 𝐵, 𝐶, 𝐾, 𝑊, 𝑑𝑡𝐵, 𝑑𝑡𝐸), one 

needs to define metrics related with: 

 

• Tokens last processing locations: A list 𝐿𝑃 with the size 𝑠𝐾 that in the position k (associated with 

the token of index k) holds the pair (𝑑𝑜𝑢𝑡𝑘 , 𝑁𝑘) where 𝑑𝑜𝑢𝑡𝑘 is the last timestamp of departure of 

the token from the node 𝑁𝑘. The list starts empty; 

• Node idle times: A list 𝐼𝑇 with the size 𝑠𝑊 that holds the idle time duration (a float) for each entry 

W. The list starts empty. 

• Node accumulated processing: A counter with a value smaller than 𝑠𝐾 which enables to keep track 

of how many tokens have been processed for the desired timeframe e.g. the current shift. The 

counter starts as zero and may be reset according to the desired metric, e.g. daily or at shift start. 

• Tokens throughput time: An attribute for each token 𝑘 which measures the time elapsed in 
[𝑑𝑡𝐵, 𝑑𝑡𝐸] spend to go from the start node to the end node. 

 

 

Then, for each 𝑤 ∈ {0, … , 𝑠𝑊}, so having 𝑊𝑘 = (𝑑𝑖𝑛𝑤 , 𝑑𝑜𝑢𝑡𝑤 , 𝑁𝑤 , 𝐾𝑤 , 𝑃𝑤 , 𝐺𝑤) and 𝑘 = 𝑖𝑛𝑑𝑒𝑥(𝐾𝑤), the 

above metrics can be calculated as: (a) 𝐼𝑇𝑤 = 𝐿𝑃𝑘,0 − 𝑑𝑖𝑛𝑤; (b) 𝐿𝑃𝑤 = (𝑑𝑜𝑢𝑡𝑤  , 𝑁𝑤). 
 

 

Metrics level 2: From the metrics obtained in the previous level, one may calculate for each element (i.e. 

nodes, queues, tokens) but also globally for the PL, the following metrics: (a) node idle time (from 𝐼𝑇𝑤); 

(b) node processing time (from 𝑃𝑤); (c) node locking time (as the sum of idle time plus processing time); 

(d) node starving time (as the difference between the total study duration and the total locking time); (e) 

node throughput (as the number of token leaving a node per time unit); (f) queue permanence (as the number 

of token in the queue per time unit), etc..  

 



The authors would like to remind the reader to the fact that, although this mathematical approach is quite 

relevant for the purpose of this study, it is still general enough to accommodate many other problems, e.g. 

bottleneck detection and prediction or predictive quality control. This gains particular relevance when one 

considers the usefulness of level 2 metrics and higher. 

Workstation Processing Times Data Generator 

Although the proposed approach will be tested against data from a real manufacturing PL, to be able to 

proceed with several experiments regarding parameter stability and prediction robustness, fundamental to 

benchmark the chosen problem and also the machine learning approach, it is required to have a mechanism 

to generate mathematical valid data from the real data. In the literature, the authors were able to find works 

regarding simulation and data generation of data for a PL as Centomo (2018). However, the mentioned 

approaches made too many simplifications or are not easily adapted to the problem under study. 

Additionally, the purpose here is to find a mathematical model as accurate as possible to this situation.  

 

In this work, in order to generate data under valid assumptions, a QDG model is used where artificial data 

is obtained by simulation by using two generators to construct the values of 𝑊𝑘 (see assumption 7 on the 

definition of a QDG): (a) a node-to-node path generator for each token; and (b) a processing times generator 

for each node. The path generator is simply obtained from real data by constructing a count transition matrix 

node-to-node, from which we obtain the probability of a token leaving a node i and moving into a node j. 

The processing times generator is not so straight forward and needs to be adapted to the real data, as much 

as possible.  

 

A common approximation for the processing times (PT) distribution is to use a normal distribution. 

However, such is quite imprecise, since processing time histograms of real data show that the data is not 

symmetric, does not have negative values or even values below some positive threshold, and outliers tend 

to follow a different distribution. Such implies that a more realistic distribution function for the generator 

will be a composite probability distribution, see Oosterbaan (2019).  

 

As expected, measures between probability distributions play a significant role in the quest to find a good 

generator. There are many variants such as the Hellinger coefficient, Jeffreys distance, Chernoff coefficient, 

directed divergence, and Kullback–Leibler divergence (relative entropy). Using the relative entropy, the 

probability density function (p.d.f.) of processing times of real data and the p.d.f. associated to a processing 

times generator may be compared to measure how near they are to each other. Then, by experts’ intuition 

and tentative and error, several processing times generators may be created and tested to find the best 

candidate. The generator will depend on parameters that take into account the variability and specificity of 

each workstation, which can be found by traditional grid fitting methods on real data. With the above 

approach, the generator proposed in this work is defined as follows:  

 

Let 𝑈(𝑎, 𝑏) 𝑎nd 𝐿𝑁(𝜇, 𝜎) denote (respectively) a uniform distribution defined in [𝑎, 𝑏] ⊂ ℝ and a log-

normal distribution with location parameter 𝜇 and shape parameter 𝜎. Define the constants 0 < 𝑎1 <
𝑏1,  𝑎2 < 𝑏2, 0 < 𝑎3 < 𝑏3, 0 ≤ 𝑎4 < 𝑏4 < 1, the maximum percentage of outliers 𝑟 ∈ [0,1[, and for each 

processing location 𝑖 ∈ ℕ: 

• 𝑤𝑖 ∈ 𝑈(𝑎1, 𝑏1) as the lower production barrier; 

• ζ𝑖 ∈ 𝑈(𝑤𝑖 + 𝑎1, 𝑤𝑖 + 𝑏1) as the upper outlier barrier; 

• μ𝑖 ∈ 𝑈(𝑤𝑖 + 𝑎2, 𝑤𝑖 + 𝑏2) as the location parameter (e.g. mean); 

• σ𝑖 ∈ 𝑈(𝑎3, 𝑏3) as the shape parameter (e.g. standard deviation); 

• γ𝑖 ∈ 𝑈(𝑎4, 𝑏4) as the outlier selection parameter; 

• the generator function for the processing times as 

 



𝑃𝑖 = {
𝑈(𝑤𝑖, ζ𝑖) , 𝑖𝑓 𝑟 < γ𝑖,

𝑤𝑖 + 𝐿𝑁(μ𝑖, σ𝑖) , 𝑖𝑓 𝑟 ≥ γ𝑖.
 

 

In this definition, 𝑃𝑖 behaves as a random variable with bounded support that generates the processing times 

at the node i. The first branch generates abnormal processing times and the second generates the normal 

ones. The distribution has support above 𝑤𝑖 because it is not realistic to assume that a machine or an 

operator can shrink the processing time to zero, without a lower limit, just by adding more effort without 

scenario changes (e.g. increasing hardware or human resources). As expected, the above parameters can be 

precisely found for a given data set but also allow to model different data behaviors on each processing 

location.  

 

As is predicted by the famous Central Limit theorem, the distribution of the sum of (a big enough) number 

of processing times at different locations will approach a Normal distribution, which is reinforced by the 

fact that some products may leave the PL earlier (e.g. defect detection at a station), thus contributing to the 

symmetry of the distribution of the throughput time as a sum of the distributions of the processing times at 

each workstation.  

 

THROUGHPUT PREDICTION ON SIMULATED DATA 

The main goal of this section is to describe the various tests that were conducted in order to find out whether 

it would be reasonable for the proposed framework to predict in real time the efficiency of a given token. 

In practice, this means that the authors have started with a feature of the graph such as the throughput time 

(e.g. the time it takes for a token to navigate the graph from start to end). Based on a given percentile one 

calculates a label based on it: 0 (not efficient) or 1 (efficient). What will be assessed is whether one can 

accurately predict this label by using incomplete information about the feature at hand. For this use case, 

the first nodes and transitions durations will be used in order to predict the label’s outcome. If the authors 

succeed, then one can predict a token’s performance using just the data from the first nodes. Since this is a 

graph, its length is completely irrelevant since this applies to all use cases. What might prove meaningful 

is the ratio between the nodes used for prediction and the number of nodes in the graph. 

 

 

Parameter Stability and Predictive Robustness 

To have a valid industrial solution, it is of major importance to measure its stability to a change in the 

conditions. This will have a consequent impact in the robustness of the algorithmic solutions used. The 

following experiments have been conducted using simulated data as described in the Workstation 

Processing Times Data Generator subsection, in order to have a data set with the intended characteristics. 

Note that the data sets generated with the distribution proposed are similar (in a precise mathematical sense) 

to a data set with data of a real production line. A graph with a typology of 9 nodes has been used. 

 

Experiment A – Class of machine learning algorithms: The first step to have a controlled study about 

parameter stability and predictive robustness, allowing the use of hyperparameter and pipeline optimization, 

is to define a class of techniques to optimize and test. As described in the introduction, the Machine 

Learning (ML) problem to be solved may be reduced to a binary classification.  

There are many techniques in the literature that may be applied to binary classification with proved success 

such as: (a) Naïve Bayes, (b) Logistic regression and variants; (c) k-Nearest neighbor with Euclidean or 

Mahalanobis distances; (c) Support vector machines and variants with kernel functions; (d) Variants of 



decision trees as bagging decision trees, boosted decision trees, or random forests; (e) Gaussian mix models; 

and (f) Voting classification.  

 

After testing each of the above techniques in the data sets of this work with sparse grid hyperparameter 

optimization (whose descriptions are omitted), the conclusion is that all techniques perform relatively well. 

However, the variants of decision trees are the best ones when compared to the standard metrics obtained 

from the confusion matrix. For such reasons, from now on, the experiments use techniques such as these 

and were implemented in standard Python libraries such as Scikit-learn and TPOT, for automated machine 

learning (autoML).  

 

Although the percentile threshold predefined will characterize if the classes are balanced or not (i.e. being 

near 75%, mean that it exists 75% of zeros and 25% of ones), the number of false positives and false 

negatives obtained were quite low, so the focus will not be on F1 but rather on the accuracy metric.  

 

Experiment B – Number of nodes and percentile influence: This experiment intends to understand if 

there is a dependence between the accuracy metric results obtained by a Random Forest Classifier (RFC) 

and the changing number of features (i.e., number of nodes used for prediction).  The label is obtained from 

the percentile of the total time that tokens are in the graph (i.e., going to all the nodes and queues of their 

complete paths). 

 

Using the standard Scaler in conjunction with RFC with 100 estimators, and without any further fine tuning 

to the pipeline, the accuracy results described in Table 1 were achieved. Two thirds of the data were used 

for training whilst the remaining were used for testing. 

 

Here, the training algorithm was run for two different percentiles to assess the impact of the percentile in 

the overall outcome. Additionally, the authors have also ran a single data set and a data set with enriched 

features. Single features are the durations of nodes and transitions (time spent in the queue), while enriched 

features include some of these durations summed together. Since these aid the algorithm to find correlations, 

one can see a significant increase in the accuracy when the enrichment is added. The only exception seems 

to have occurred for the 2 out of 9 nodes experiment with percentile 80%. This deviation may be due to 

inherent characteristics of the data set. 

Table 1. Results for experiment B, where the accuracy of the pipeline was tested with different levels of 

information and against different percentiles  

 Percentile = 60% Percentile = 80% 

 Single Features Single + Enriched 

Features 

Single Features Single + Enriched 

Features 

2 out of 9 nodes 58.18% 65.45% 79.39% 78.18% 

3 out of 9 nodes 66.66% 70.30% 78.78% 81.21% 

 

One can here observe already very satisfying levels of prediction which indicate that the data set is quite 

stable. This can be confirmed by analyzing the histogram of the throughput time from which the percentile 

is calculated, see Figure 4 (left). One verifies that the percentile introduces some perturbation in the 

accuracy of the classifier thus making it perform better for higher percentiles. 

 

Figure 4 (left) and Figure 4 (right). On the left, histogram from the metric from which the percentile is 

calculated. On the right, histogram of the processing time in the second node of the graph. The number of 

bins was adjusted to provide enough granularity. 



 

 
 

 

Experiment C – Outlier influence: In this experiment, the outlier variation was set to an uniform 

distribution with parameters 0 and 0.5 i.e. there was a significant reduction of the outlier variation in 

comparison to Experiment B. 

Table 2. Results for Experiment C where the accuracy of the pipeline is tested against a more reduced level 

of outliers. 

 Percentile = 80% 

 Single Features Single + Enriched 

Features 

2 out of 9 nodes 78.79% (-0.6%) 79.39% (+1.21%) 

3 out of 9 nodes 81.81% (+3.03%) 83.03% (+1.82%) 

 

The 60% percentile was dropped as this is not a sufficiently realistic percentile level for real applications.  

Compared with Experiment B (see Table 1), one can see that in the first row of Table 2, there is not much 

improvement of the classifier accuracy. Most probably, this is due to very little data being used, which 

translates into higher deviations.  

 

In the second row of Table 2, there was a slight increase in accuracy for both single and enriched features 

compared to Experiment B. The underlying reason is that the enriched features tend to soften the variability 

that is introduced by the outliers.  

 

Experiment D – Data set variability: In the previous experiments the ML pipeline was tested in one data 

set only. In this experiment, 5 different simulated data sets are used, in order to study the robustness of the 

classifier. Outlier variability is the same as in the previous experiment. 

 

 

 

 

 



Table 3. Results for experiment D where the accuracy of the pipeline is compared among different data sets 

Percentile = 80% 

 Single Features Single + Enriched 

Features 

Data set 0 2 out of 9 nodes 73.94% 73.94% 

3 out of 9 nodes 76.36% 79.40% 

Data set 1 2 out of 9 nodes 76.36% 78.79% 

3 out of 9 nodes 84.24% 86.67% 

Data set 2 2 out of 9 nodes 78.18% 78.79% 

3 out of 9 nodes 81.82% 81.82% 

Data set 3 2 out of 9 nodes 78.18% 79.39% 

3 out of 9 nodes 80.61% 81.21% 

Data set 4 2 out of 9 nodes 77.58% 79.40% 

3 out of 9 nodes 82.42% 83.03% 

Table 4. Statistics for the results in Table 3. 

  Minimum Mean Maximum Δ (Max-Min) 

2 out of 9 nodes Single Features  73.94% 76.84% 78.18% 4.24% 

Single + Enriched Features 73.94% 78.06% 79.40% 5.46% 

3 out of 9 nodes Single Features 76.36% 81.09% 84.24% 7.88% 

Single + Enriched Features 79.40% 82.42% 86.67% 7.27% 

Overall, the classifier robustness is within reasonable limits of variability. The interval between maximum 

and minimum accuracy increases as more nodes are used (see Table 4). This makes sense since the number 

of features is also being increased and thus variability increases.  

Again, the smoothing effect provided by the enrichment is an advantage for classifier’s performance as one 

can assess by comparing single versus singles plus enriched features. This holds even for this larger sample 

as expected. 

Experiment E – Local and global perturbations (location parameter): Up to now, the simulator was 

using a range of parameters for the log normal distribution for the duration in each transition and node. In 

this experiment a deviation will be introduced in Node 2. The goal is to test how this deviation affects the 

overall classifier performance, which is tied to the end metric, the Throughput Time. Here, the parameter 

μ of the log normal (i.e. the location parameter) is shifted by an additional 2 units. These units are added to 

a parameter which is generated from an uniform distribution. 

 

 

 

 

 

 

 

 

 

Figure 5 (left) and Figure 5 (right). On the left, the histogram from the metric from which the percentile is 

calculated. On the right, histogram of the duration in Node 2 where the introduced deviation is visible. 

 



 

Table 5. Results for experiment E where the accuracy of the pipeline is compared among different data sets 

with the introduced perturbation. 

Percentile = 80% 

 Single Features Single + Enriched 

Features 

Data set 0 2 out of 9 nodes 79.40% 81.82% 

3 out of 9 nodes 83.03% 82.42% 

Data set 1 2 out of 9 nodes 80.61% 81.82% 

3 out of 9 nodes 81.21% 81.21% 

Data set 2 2 out of 9 nodes 81.82% 78.18% 

3 out of 9 nodes 86.06% 83.64% 

Data set 3 2 out of 9 nodes 80.61% 81.21% 

3 out of 9 nodes 82.42% 81.21% 

Data set 4 2 out of 9 nodes 76.97% 78.79% 

3 out of 9 nodes 80.00% 80.00% 

Table 6. Statistics for the results in Table 5. 

  Minimum Mean Maximum Δ (Max-Min) 

2 out of 9 nodes Single Features  76.97% 79.88% 81.82% 4.85% (+0.61%) 

Single + Enriched Features 78.19% 80.36% 81.82% 8.63% (+3.17%) 

3 out of 9 nodes Single Features 80.00% 82.55% 86.06% 6.06% (-1.82%) 

Single + Enriched Features 80.00% 81.70% 83.64% 3.64% (-3.63%) 

 
 
In overall terms, the classifier’s performance is equivalent to that of Experiment D. Regarding classifier 

stability, there is a trend for an increased amplitude in the 2 out of 9 nodes scenario. Yet on the 3 out of 9 

nodes, the amplitude shows a decreasing trend which translates in better stability even when one tends to 

the fact that a significant deviation was introduced. 
 
Experiment F – Local and global perturbations (shape parameter): This experiment follows the logic of 

the previous experiment with the difference that the parameter now shifting is the 𝜎 of the Log-Normal (i.e. 

the shape parameter). This shift is also 2 units. This perturbation introduces a much deeper disturbance to 

the distribution as Figure 6 shows. 



Figure 6 (left) and Figure 6 (right). On the left, histogram from the metric from which the percentile is 

calculated. The effect of the deviation is quite drastic. On the right, the histogram of the duration in Node 

2 where the introduced deviation is also clearly visible. 

 

 
 

Table 7. Results for experiment F, where accuracy of the pipeline between different data sets was compared. 

Percentile = 80% 

 Single Features Single + Enriched 

Features 

Data set 0 2 out of 9 nodes 86.06% 84.24% 

3 out of 9 nodes 86.06% 85.46% 

Data set 1 2 out of 9 nodes 89.09% 90.30% 

3 out of 9 nodes 88.49% 89.09% 

Data set 2 2 out of 9 nodes 85.46% 84.24% 

3 out of 9 nodes 86.06% 87.88% 

Data set 3 2 out of 9 nodes 87.88% 88.48% 

3 out of 9 nodes 90.30% 90.30% 

Data set 4 2 out of 9 nodes 85.45% 87.27% 

3 out of 9 nodes 89.09% 88.49% 

Table 8. Statistics for the results in Table 7. 

 Minimum Mean Maximum Δ (Max-Min) 

2 out of 9 nodes Single Features  85.45% 86.79% 89.09% 3.64% (+0.6%) 

Single + Enriched Features 84.24% 86.91% 90.30% 6.06% (-0.6%) 

3 out of 9 nodes Single Features 86.06% 88.00% 90.30% 4.24% (+3.64%) 

Single + Enriched Features 85.46% 88.24% 90.30% 4.84% (+2.43%) 

The perturbation introduced has improved greatly the classifier’s performance. Classifier robustness has 

also improved in global terms. 

 

Behavior Prediction through Automated Machine Learning 

After a good understanding of the classifier’s behavior gained in the previous experiments, now the authors 

apply AutoML to see how to further optimize these pipelines. This is a task where TPOT (Tree-based 



Pipeline Optimization Tool) can be of great assistance. TPOT is a Python library which tests different ML 

pipelines against a data set, see Randal (2016). Not only that, it also fine-tunes the hyperparameters of the 

prediction algorithms. TPOT is based on genetic programming and the user can configure TPOT to run 

based on a set of inputs. The reason behind the use of this strategy had to do with the very good performance 

that the Random Forest Classifier already exhibited in the previous experiments. Since TPOT is also tree 

based, this is a logic next step. 

 

TPOT’s Classifier uses randomness to find the best pipeline combination. Due to this, the same data set 

may be fed to TPOT using the same input parameters and produce different results. One way of making its 

results replicable, is to introduce the RANDOM_STATE variable in its input so that the same code may be 

ran twice and output the same pipeline as a result. 

 

Although TPOT is immensely useful, it takes some tries to get it to run and finish the pipelines optimization. 

One of the causes for this behavior is that it requires a lot of computational resources and without the right 

configuration parameters it may crash. Another important aspect is that TPOT relies on other libraries such 

as Sci-Kit Learn, XGBoost or PyTorch which makes it particularly complex to set up. On the other hand, 

this is an advantage as these are popular ML libraries and their ML algorithms are open source and well-

known within the scientific community. 

 

TPOT was applied for the same 5 data sets that were used in Experiment D. The results are presented in 

Table 9. This run was executed with GENERATIONS = 5, POPULATION_SIZE=10, N_JOBS = -1 and 

N_SPLITS = 10. 

Table 9. Results obtained using TPOT for 5 different data sets with percentile set at 75%. 

 
Accuracy 

Test Set 

Accuracy 

Training 

Set 

Pipeline 

Data Set 0  100% 99.87% GradientBoostingClassifier(learning_rate=0.5, max_depth=8, max_features=0.25, 

min_samples_leaf=19, min_samples_split=19, n_estimators=100, subsample=0.85) 

Data Set 1 100% 99.93% XGBClassifier(learning_rate=0.001, max_depth=8, min_child_weight=6, n_estimators=100, 
n_jobs=1, subsample=0.55, verbosity=0) 

Data Set 2 100% 99.80% XGBClassifier(learning_rate=0.01, max_depth=2, min_child_weight=2, n_estimators=100, 

n_jobs=1, subsample=0.3, verbosity=0) 

Data Set 3 99.8% 100% DecisionTreeClassifier(criterion="entropy", max_depth=4, min_samples_leaf=6, 

min_samples_split=13) 

Data Set 4 100% 99.73% StackingEstimator(estimator=GradientBoostingClassifier(learning_rate=0.01, 

max_depth=7, max_features=0.2, min_samples_leaf=8, min_samples_split=5, 

n_estimators=100, subsample=0.8)), GaussianNB()) 

 

 

At a glance, it may look like there is some overfitting occurring. However, remember how in Experiment 

D already very good accuracies were achieved without the need to make any fine tuning to the 

hyperparameters of the Random Forest classifier. If the examples of Data Set 1 and Data Set 2 are to be 

taken into consideration, since they are optimized by the same pipeline, there is already an accuracy of 

100%. This also describes the relative stability of the process itself that is being modeled. 

 

In most scenarios, the pipeline is composed of an unique classifier. The exception is Data Set 4 where a 

stacking estimator is used. A stacking estimator uses different classifiers (in this scenario only two) and 

then uses the best outputs to maximize its accuracy. This is another advantage of using an AutoML tool 



such as TPOT. These combinations are done automatically. Otherwise, they might not occur to the Data 

Scientist or the number of combinations may be too cumbersome to test to a full extent. 

 

Even though the authors have achieved some satisfying results in this section, there is now the need to test 

this methodology with real data in order to verify whether the classifier’s characteristics hold. 
 

THROUGHPUT PREDICTION ON MANUFACTURING PRODUCTION LINE 

With the goal of testing the hypothesis at hand, in this work a data set which originates from an actual 

production line located in the Bosch Thermotechnology’s Aveiro plant in Portugal was used. The data set 

was obtained from the Manufacturing Execution System (Bosch’s Nexeed MES) and converted in order to 

match the structure of the general mathematical model. This line is comprised of a total of 18 workstations 

and it operates on 2 to 3 daily shifts. The yearly production for this line is around 50.000 parts. In Table 10 

and Figure 7, the authors characterize one of these stations through some data statistics. 

 

Table 10. Data descriptive statistics for one of the stations of this line for the processing time feature for 

the data set of one shift. 

Statistics for Processing Time in the station 

Minimum 24.21 s 

Average 48.49 s 

Median 34.29 s 

Maximum 164.25 s 

Standard Deviation 29.40 s 

Q1 29.61 s 

Q2 34.23 s 

Q3 50.67 s 

Count 113 

 

Figure 7. Histogram of the data characterized in Table 10. 

 

 

Dimension Reduction and Visualization 



Dimension reduction is a standard approach to identify relevant features and remove others that do not give 

a significant contribution to the classifier’s task. Although, there are many techniques for dimension 

reduction, the most popular technique is principal component analysis and its variants, see Liu (2007) and 

references within. Considering the mathematical characteristics of the data sets and the need to visualize 

the data topology (as reduction from the number of features to dimension 2), the t-distributed stochastic 

neighbor embedding was also implemented, see Maatens (2008). 

Here, two data sets are considered: (A) having values for 8 elements; (B) having values for 4 elements; with 

the same accumulate production line transverse time with a total of 18 nodes.  

PCA - Principal Component Analysis: PCA was introduced by Karl Pearson back in 1901 and there are 

many variants in the literature, e.g., robust PCA, kernel PCA, or localized PCA, see Ma (2019). Here, 

standard PCA is used. However, since PCA may be sensitive to feature scale and outliers, different scaling 

methods were tested. These feature transformations are comprehensively explained in SciKit-Learn’s 

documentation, see Sci-Kit Learn (2020). It was observed that although the scaler choice is important in 

many scenarios, this was not the case here. In Figure 8, one can observe the results of such implementation 

for both data sets. 

Figure 8 (left) and Figure 8 (right). Cumulative explained variance plotted (in the y-axis) and the number 

of features (in the x-axis) after PCA application using the Standard Scaler for the A and B data sets, 

respectively. 

 

 
 

Figure 8 (left) shows that a relatively small number of elements is enough to characterize 90% of the data. 

Such conclusion is useful for applications in real situations. 

 

 

 

 

 

 

 

 

 

Figure 9 (left, situation A) and Figure 9 (right, situation B). Darker values are below percentile 75%; 

lighter values are equal or above percentile 75%; the x-axis is related with the first principal component 

and the y-axis is related with the second principal component. 

 



 
 

Plots in Figures 9 are obtained by using PCA (with whiten and no renormalization for dimension reduction) 

for both situations. Although, a smaller number of elements characterize the data, the reduction to 

dimension 2 shows that the different classes are highly overlapped. Something expected since the elements 

nodes that are not in the data may be a source of increased processing time. 

 
t-SNE – t-distributed Stochastic Neighbor Embedding: t-SNE is a very effective unsupervised nonlinear 

method for data visualization. While t-SNE preserves only small pairwise distances or local similarities, 

PCA is concerned with preserving large pairwise distances to maximize variance. Laurens illustrates the 

PCA and t-SNE approach pretty well using a Swiss Roll; if data has a spiral format distribution, PCA will 

connect points that are close in Euclidean distance sense but such points may be quite far when one follows 

the spiral structure.  

 

Figure 10 (left, situation A) and Figure 10 (right, situation B). Darker values below percentile 75%; lighter 

values equal or above percentile 75%; the x-axis is related with the x-coordinate of the net elements and 

the y-axis is related with the y-coordinate. 

 

 
 

From analyzing the results depicted in Figure 10, and since the unknown operation to predict has a linear 

structure, it is expected that data sets with a smaller number of elements will not lose too much information 

and by finding another well-suited ML pipeline, the classifier metrics will be similar to data sets with a 

higher number of elements information. Furthermore, there is no clear clustering structure for the label data 

(on the figures of both techniques) so linear ML techniques are not expected to perform well without 

applying an adapted lifting function to take advantage of the kernel trick. In other words, the classification 

problem is not trivial by itself. 



Prediction Results 

In Table 11 the results of predicting the correct label using from two to five sequential features are 

presented. This run was executed with GENERATIONS = 5, POPULATION_SIZE=10, N_JOBS = -1, 

N_SPLITS = 10 and N_REPEATS = 3, the same inputs as previously. In practice, this represents how 

accurately one can predict the throughput time of a product based on the outcome at the early stages of the 

graph. 

Table 11. Results with the line’s data set where TPOT optimized different pipelines for each use case with 

a 75% percentile. 

 Accuracy Pipeline 

5 of 18 nodes 97.50% 
StackingEstimator(estimator=MLPClassifier(alpha=0.01,learning_rate_init=1.0)), 
StackingEstimator(estimator=GaussianNB()), DecisionTreeClassifier(criterion="entropy", 

max_depth=9, min_samples_leaf=3, min_samples_split=11) 

4 of 18 nodes 96.59% 
StackingEstimator(estimator=DecisionTreeClassifier(criterion="entropy", max_depth=3, 
min_samples_leaf=20, min_samples_split=17)), BernoulliNB(alpha=10.0, fit_prior=True) 

3 of 18 nodes 95.76% 
DecisionTreeClassifier(criterion="entropy", max_depth=6, min_samples_leaf=10, 

min_samples_split=5) 

2 of 18 nodes 86.36% 
RandomForestClassifier(bootstrap=False, criterion="entropy", max_features=0.05, 
min_samples_leaf=1, min_samples_split=16, n_estimators=100) 

 

One conclusion seems to be that the simulator uses a probabilistic distribution which describes the physical 

phenomenon in a very good way. As it can be seen from Tables 10 and 11, the accuracy did not decrease 

significantly. This is a positive remark since drastic drops in accuracy are usually a common symptom of a 

rough theoretical approximation model to generate the synthetic data. 

It might be surprising that the accuracy is so high in these scenarios. Since a label is being predicted which 

is tied with the throughput time of the graph, then the correlation that the ML algorithm is trying to find is 

actually a linear combination of the time spend in visible and hidden nodes/queues. Since TPOT explores 

a number of combinations between pipelines and the features provided, it is also not surprising that the 

results have such a high accuracy. However, a high accuracy may be the result of overfitting the training 

data with patterns specific to a particular (train, test) pair set.  

From the start, the authors had always in mind that some challenges would probably arise, and this was 

indeed what was observed. Since the domain is organizational, there are several issues that need to be 

addressed. 

 

Challenges for the Deployment of the Solution   

With the increasing availability of data in many organizational departments, the urgency to put this data to 

good use is increasing at a steady pace. However, sometimes the challenges seem unsurmountable. From 

organizational to technical difficulties, there is still a long road ahead for most organizations to be able to 

get the most leverage out of their data and solutions as the one described with simulated data.  

 

In this subsection, one will explore the types of challenges being faced. These challenges have been split 

into three categories: (i) organizational, (ii) development, and (iii) technical and data pipeline.  

 

Organizational challenges  



Issues, controversies, and problems: As mentioned in Hartley (2019), digitalization is a process, and a long 

one indeed. From the start, it is important to convey to everyone in the organization the benefits and added 

value that these technologies bring. The human factor is generally one of the first barriers that digitalization 

faces. 

People are at the center stage and they are the main drivers of this line of work. Data related techniques can 

be used in more traditional fields such as prediction or optimization, but they are starting to be increasingly 

used in other fields such as innovation, see Haefner (2021). As a result, most organizations are already 

including projects in their roadmaps which include techniques related with Machine Learning. However, 

putting these ideas into practice is very challenging in itself.  

 

One of the first limitations encountered is related with talent management and enabling. It is often the case 

that very few people in the organization have the right know-how to conduct a long-term data strategy. 

With so many new technologies being released in very short timeframes, it is very easy to lose track or even 

know where to begin learning. This may occur even for highly trained and specialized engineers/IT 

personnel.  

 

Moreover, even if the organization does have this kind of talent within its ranks, there is often a huge gap 

between collaborators which are experts in the organization’s processes (being them from the 

manufacturing, logistics or financial areas) and the ones more focused on the technical side (infrastructure, 

mathematical techniques, etc.). This makes communication very hard and frustrating and causes many 

disturbances to the whole process.  

 

Recommendations: The authors have explored previously how building know-how in technical and 

processual topics is a hindrance in today’s organizations. There are different strategies to work around this 

challenge. One might be hiring someone with the right background in order to support the company to 

establish its own data strategy, not only in terms of the infrastructure but also for the overall, log-term data 

strategy. This could be a suitable strategy for Small and Medium Enterprises (SMEs). However, most often 

organizations will need a complete team to support this need. This sort of work involves almost the entire 

organization and requires extensive support from the higher management level in order to be able to work 

effectively due to the required changes it encompasses. 

 

Another alternative, which is precisely the case at hand here, is the establishment of partnerships between 

local universities and organizations. This can translate into a tremendous advantage since both parties have 

a lot to contribute and benefit from working hand in hand. This combination of cutting-edge techniques and 

technologies with the field experience of collaborators of the organization is invaluable and the authors 

believe that this partnership will yield very significant results over time. 

 

There was also the mention to the fact that there is often a huge gap between engineers and process experts. 

One recommendation to overcome such difficulties is to involve a third party which acts as a mediator 

between them. As data driven projects become more disseminated among organizations this need might 

tend to fade over time. At this point, it becomes clear that the organization is shifting towards more data 

awareness. 

 

Development challenges 

Issues, controversies, and problems: Besides the challenges already mentioned which were more related 

with data acquisition and standardization, other important aspects also arise when it comes to developing 

and validating a ML framework which needs to process a great amount of information in real time. At the 

end of the first stage of development, the issue of verifying the correctness of the calculated metrics started 



to be a real issue. At first, the authors were using simulated data which was fed in real time to the system. 

Although this method does mimic the actual system in a comprehensive way, it was quite difficult to assess 

from the event’s timestamps alone what was happening. Using real time data makes this process very time 

consuming and exceptionally prone to error. It is manageable with only one token in the system, but this is 

not a realistic approach to test and validate the framework’s correctness.  

Recommendations: In order to overcome this difficulty, a simulator was created to generate comma 

separated files which simulate the events that are expected to occur in the graph. This allows the authors to 

automatically associate to a certain token, the various timestamps and their calculated metrics. Another 

feature of this simulator is that it generates events following different probabilistic distributions whose 

parameters can be fully configured.  

This simulator’s use is actually two-fold: besides calculating the associated metrics, it also allows one to 

use the result to benchmark different ML pipelines against the data and to verify the accuracy of the 

prediction that can be achieved. When generating simulated data, multiple files are generated so that the 

ML pipelines can be tested against different data sets and thus assess the stability of the accuracy of the 

classifier. 

Besides data validation, it is also worth mentioning that data privacy is a real concern and something which 

must be preserved at all times. For instance, in this scenario where a product’s performance in a line is to 

be assessed, the identity of the operators working on the line is never to be disclosed and is completely 

unknown to the framework. An excellent reference on how ML models can have a hazardous influence in 

the day-to-day life of citizens and how to prevent these nefarious effects can be found in Kathy O’Neil’s 

book, Weapons of Math Destruction (O’Neil, 2016).   

 

Technical and data pipeline  

Issues, controversies, and problems: There are no data driven projects without data. This is a fundamental 

truth, yet it is very easy to overlook whether a digital foundation exists in an organization. At its core, there 

are generally different Information Systems (ISs) which support all the business needs of these entities. 

Most often, these are Enterprise Resource Planning systems (ERPs) which combine a myriad of 

functionalities that all organizations need and rely on e.g. Human Resources or Financial processes. When 

one tends to look at the Manufacturing area, MESs are often a reality, but this might not be the case 

everywhere. This very diversified ecosystem means that having a data strategy is indeed mandatory. 

Otherwise, extracting actual information from such an infrastructure will be very time consuming and 

unproductive. This can be due to limited connectivity between the ISs and equipment yet one of the most 

common sources is the heterogeneity of the data sources themselves, which do not combine when one tries 

to fit them together. 

Additionally, organizations usually face the ordeal of having to deal with legacy systems which have been 

in place for several years without a proper upgrading roadmap. Sometimes it may even be the case that the 

inner works of these systems are only known by a very limited amount of people which aggravates the 

problem. Most often, these are critical systems and the enterprise cannot fully function without them. This 

very entrenched dependency makes any effort of migration seem overwhelming due to the high risks it 

imposes. The same holds true for legacy equipment such as Programmable Logic Controllers (PLCs) and 

Industrial Personal Computers (IPCs) which have been installed many years ago and although these still 

supply critical functions to the manufacturing process, their connectivity is often quite limited thus not 

allowing these equipment to connect with the ISs in place. Most often, these devices need to be replaced 

by more recent ones with better functionalities, yet this transition is a very slow process. This happens not 

only due to technical challenges but also because of the disturbances its replacement may have in the 

productive process. 



As one can picture and since the foundation is quite diverse, both in structure and even technologically 

wise, interfacing these systems with a ML framework is quite complex. Most organizations rely on flat file 

exports to fulfil these needs and having more advance features such as real time processing is not planned 

for the foreseeable future. Besides this, there is hardly ever an infrastructure in place which can meet the 

organization’s data needs. This is often one of the first steps towards running data driven projects. 

Finally, the fact that technologies are ever changing means that they become obsolete in a very short period 

of time. This is an added effort for organizations: besides needing to add more focus on maintaining their 

software up and running, technical skills are quickly deemed outdated as well. It was with this scenario in 

mind that a new approach was designed, one that could help organizations overcome some of these issues. 

 

To sum up, the most prominent issues in this area are the lack of standardization in communication 

protocols and data structures, aged or missing technological infrastructure and poor interfaces between ISs.  

 

Recommendations: The proposition is that a good data pipeline is not enough by itself, but together with a 

well characterized mathematical representation of the system relations and data, can solve multiple data-

driven problems across an organization. The main idea behind this framework is that by being highly 

concept oriented together with real time data, a generic tool is achieved which is useful for a myriad of 

different contexts and situations.  

 

In order to fulfil the challenges previously mentioned, the authors have designed a framework which has 

the following characteristics: 

• Asynchronous Operation: Metrics for the graph are calculated asynchronously from the information 

currently reaching the system. 

• High Configurability: The module relies on YAML files to allow the user to completely configure 

the process to be modeled by the abstract entity of the graph. For instance, if a different event 

defines the start of the graph, this can be configured. 

• Easy Deployment: The architecture is implemented through the use of containers and the 

deployment process is carried out through a single text file. This makes deployment to production 

systems easy and consistent. This architecture enables a high degree of abstraction in relation to 

the Operation System (OS). 

• Fault Tolerance: This was another important aspect taken into consideration and this is the reason 

why the usage of brokers and flow components is so extensive. In case of failure, no data gets lost. 

As soon as the service is available again, it is possible to resume operation starting from the moment 

of failure. 

• Flexibility: This architecture was conceived with flexibility in mind so that not only systems such 

as MES can feed it but other data sources as well such as Internet of Things (IoT) devices. In order 

to provide this extended flexibility, a middleware was developed to allow for this uniformization. 

• Machine Learning Pipeline Integration: This architecture enables us to integrate a standard ML 

pipeline, namely a training stage based on continuously ingested data and a prediction stage. 

• Scalability: The system is container oriented and all data flows go through brokers so that it is 

horizontally scalable. 

Figure 11. Proposed architecture for the general architecture for the graph based framework. 

 



 

 

In Figure 11, the framework itself is pictured. Messages from the local MES are injected into a RabbitMQ 

service and a bridge microservice processes messages and injects them into a Kafka topic. These messages 

are processed by a middleware which filters out the messages which are not relevant and which translates 

the relevant ones into the standard data structure for the framework. After this pre-processing, the now 

standardized message is injected in a distinct Kafka topic where it will be processed by the Graph Metrics 

module. This module keeps track of all the tokens in the graph, their exact location and the metrics 

associated with them. In order to store all of this information, the authors rely on an ecosystem of databases 

for different use cases. For time series, a Prometheus variant was used. As an historical data repository, 



SQL DB was used but could be replaced by Apache Druid for OLAP. For visualization purposes, the 

recommended tool is Grafana yet there are more options available, such as Superset or Power BI. 

Although this framework does solve the issue of data heterogeneity, it is recommended that organizations 

follow and implement a concrete roadmap for standardization and modernization of their ISs and 

manufacturing devices. Even though this is an enormous collective effort, it will certain pay-off in the long 

term since data heterogeneity involves added risk, higher maintenance costs and added development costs 

due to all the extra middleware components. 

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

Since the authors recognize the usefulness of the application of the techniques previously mentioned, they 

intend to make these functionalities readily and easily available to the end user. By disguising all of the 

inherent complexity, the plan is for the so-called process expert to be able to take the most out of the system 

in a proactive way. In order to achieve this, there is the need to come up with some creative interface 

methods such as asking the output results via email using natural language. Some Natural Language 

Processing methods would then translate the user’s inputs into framework action triggers that produce and 

return reports answering users’ questions. 

 

Besides user interaction with the outputs from the system, there are three main other research directions.  

One of these would be to use Priority Queues instead of FIFO (First In First Out) as a way of reducing the 

throughput time in a graph, in this particular case, applied to a PL. In this way, products which are known 

to have a behavior which is more variable would be processed in a separate way in order to prevent 

disruption to the graph’s overall performance. This method would be first simulated and then applied to a 

real use case if the results are promising. 

To understand the nature of the nodes durations, some additional figures are provided which show this 

distribution. As one can see from Figure 12 (left), there may be scenarios where the distribution does not 

really follow a log-normal and has a high number of outliers. However, these stations tend to be the 

exception rather than the norm. Most stations follow a pattern like the one seen on Figure 12 (right).   

Figure 12 (left) and Figure 12 (right). On the left, plot of the duration of processing at Station 101 of the 

production line. On the right, plot of the duration of processing at Station 43 of the production line. 

 

 

 

A second research direction would be to apply this same framework to bottleneck identification and 

optimization. Bottleneck detection is a methodology which could be easily applied to a framework like this 

since it takes first order metrics and creates a classification based on these metrics e.g. this station is a 

bottleneck or not in a given moment in time. The framework already provides the required metrics such as 



node and transition duration to do this analysis. This is a clear example of the practical usefulness of having 

a framework which has a stratified structure and where components are built on top of each other. 

Finally, Root Cause Analysis for getting to the source of issues in local or overall graph performance can 

also be achieved through the use of such a framework. One could, for instance, understand why the duration 

in a certain station has a higher dispersion than all other stations. This could stem from various origins: the 

intrinsic nature of the process which takes place in a certain node, the interaction of the token with the node 

or the interaction of a third party with the node, for instance, the operator that may be working on a certain 

workstation. 

In this chapter, the authors have explored a generic methodology to solve a wide range of problems which 

can be modeled by a graph. The starting hypothesis was whether a framework based on graph systems using 

AutoML could be efficient in solving problems of the nature already described. Based on the experiments 

that were run, the authors can conclude that this is a robust and accurate way of introducing ML to solve a 

panoply of real life problems. Using this methodology means that although there may be a standard toolset, 

it does not mean, however, that all the problems are solved using the same classifier. The advantage of this 

methodology is precisely that there is no need to fix the classifier which is being used beforehand. That will 

depend on the intrinsic nature of the graph and processes which are being modelled. With that said, the 

pipeline is dynamic and can change over time as conditions also change. With this approach, the best of 

both worlds is combined to achieve both optimal flexibility and accuracy.   
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KEY TERMS AND DEFINITIONS 

AutoML: The process of automating the process of applying machine learning to real-world 

problems. AutoML covers the complete pipeline from the raw dataset to the deployable machine 

learning model.   

 

Bottleneck: A bottleneck is a constraint in a manufacturing line where one single station is 

setting up the pace of the line. A bottleneck station is generally always working around the clock 

without any idle time. Bottlenecks are meant to be avoided since they hinder the performance of 

the overall line. 

 

Graph: An abstract mathematical entity which possesses nodes and transitions. It is used to 

model systems with interactions between its various nodes. A manufacturing plant or a line are 

both examples of physical entities that can be described by a graph. 

 

Manufacturing Execution System (MES): An Information System which is meant to control 

manufacturing operations in real time while also gathering data from the manufacturing process.    

 

Token: An abstract mathematical entity which moves within a graph. It navigates between the 

graph’s nodes. 

 


