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Abstract—Determining the reasons for process variability of
manufacturing processes is generically quite demanding. In the
era of big data and Industry 4.0, data-driven root cause analysis
(RCA) techniques are required to support the identification
of such reasons. However, an important issue with classical
RCA methods is their sensibility to data perturbations. In
fact, adversarial data perturbation is currently one of the hot
topics in the literature. Such sensibility phenomena requires
the implementation of robust RCA approaches. Here, methods
of operational research (multi-directional efficiency analysis),
machine learning (eXtreme Gradient Boosting), and game theory
(Shapley values) are merged, to obtain a robust approach that
can (1) benchmark entities acting on a manufacturing process,
(2) determine the importance level of process variables regarding
an entity belonging to the (in)efficient group, and (3) predict the
performance of the entity’s future work sessions. A use case
at Vista Alegre Atlantis S.A., a Portuguese leader company that
manufactures porcelain tableware, high-quality glass and crystal,
is analysed to show the methodology’s success.

Index Terms—root cause analysis, multi-directional efficiency
analysis, SHAP analysis, performance prediction, porcelain in-
dustry

I. INTRODUCTION

The employment of preventive/corrective actions targeting
process improvement is a frequent activity performed in any
company that aims to be competitive. During the last years,
across the literature, it has been proven that companies with
a continuous improvement culture show higher efficiency
levels and performance ratings (e.g., see [1]). This mindset
was brought by the Lean management philosophy of waste
reduction [2] and Six Sigma statistical analysis for process
control [3], with its most known problem-solving methodol-
ogy: Define-Measure-Analyse-Improve-Control (DMAIC).

At the production stage, the tasks of a continuous im-
provement (CI) team are to: (a) derive a set of actions

that potentially improve the process performance (design an
improvement plan), and (b) measure the effect of such actions
in a precise and robust manner to evaluate the proposed
improvement plan - besides several other CI tasks. Among
the many techniques used in step (b), quality control tools of
statistical type are commonly applied with reasonable results,
particularly in the six sigma methodology. In step (a), the
selection of adequate actions implies the use of some sort
of root cause analysis (RCA) to identify the issues of the
process under study. Nevertheless, one of the biggest issues
in companies that have plenty of information about their
processes is the lack of effective process mining capabilities
able to determine relevant relationships between data fields,
getting far more information than the common statistical data
analysis. In fact, the most relevant RCA techniques for CI are
still under active study, e.g., see [4]. In this work, we focus
on step (a), proposing an RCA approach that merges tech-
niques from operational research (multi-directional efficiency
analysis), machine learning (eXtreme Gradient Boosting) and
game theory (SHAP). The proposed work is based on a
larger project of our research team that aims to implement
an automated data-driven platform, based on the DMAIC
methodology, for supporting the work of CI teams. As far as
we know no study was found regarding performance variation
prediction and (or) benchmarking in manufacturing processes,
so possible limitations of the approach compared to others
could not be provided. Figure 1 shows the location of this
work in the global context of the DMAIC, and its connection
with a complementary RCA approach, based on comparisons
of metrics distributions, data entropy levels and scenarios
determination; marked in the figure as RC1 [5].

To relate process performance with the data-driven RCA ap-
proach, we consider three ingredients: a series of quantifiable



Fig. 1: Scheme representing the integration of the approach (RC2) in an automated data-driven DMAIC methodology.

indicators to be chosen a priori as guidelines of performance
loss, a set of process variables to be linked with root causes,
and a method to aggregate the information in time periods
of fixed duration. In manufacturing, many key performance
indicators (KPI) can be used (see [6]), as the well-known
Overall Equipment Effectiveness (OEE), usually defined by

OEE = Quality ×Availability × Productivity,

see [8]. Experts will choose the process variables according to
the CI plan objectives, together with the available information
in the company’s data warehouse or by implementing a data
collection subproject.

Nowadays, due to the showcased benefits in production
management operations, many companies detain a manufac-
turing execution system (MES) [9], gathering shop-floor data.
Depending on the digitalization level of the company, we
assume the information required to apply the approach of
figure 1 is already available, can be extracted from the MES
and calculated by a system with a mathematical formula [7],
or manually acquired and transformed to the digital form.

Figure 2 presents the scheme of the proposed approach,
which shall be explained in further detail in Section II, and
then applied to the use case of a Portuguese porcelain and
crystal manufacturing company in Section III. If we take a
first look at this figure, a key notion of the approach is the
definition of Entities that make actions on the process, directly
affecting process performance. Although being defined as a
generic notion, for the use case purpose, we consider that
Entities are tuples on the form of:

Entity = (workTeam, workShift, partReference),

where workTeam is the current team operating on the pro-
cess, workShift is the current shift (e.g., morning, afternoon,
night), and the partReference is the identification number
of the part in production. Then, the main focus questions, in
the light of the scientific challenges and applicability of the
approach to real use cases, are the following:

(R1) Is it possible to have a valid multi-objective performance
evaluation about the degree of improvement of KPIs for
consecutive time periods of actions made by Entities?

(R2) Is it possible to know which process variables/KPIs are
most relevant to explain higher or lower performance
variation?

(R3) Is it possible to robustly predict the future performance
of an entity based on his current achieved performance?

Supporting the answers to the above questions is the core target
of this research.

Fig. 2: Methodology scheme (color legend of figure 1).



II. METHODOLOGY

The first step in the methodology is to define the physical
problem (see the dashed box of figure 2). Generically, a
process transforms a set of inputs (parts), and converts them
into outputs. In the vast majority of manufacturing processes,
the transformation requires resources, which are elements that
don’t directly affect the parts flow, however are essential for
machines and inner processes to work reliably. Thus, they
will not be considered in our model but in the form of
indirect process variables. Additionally, in not fully automated
systems, manufacturing processes need human intervention
(individual workers or shift teams operating machines in the
system), which are a part of the entities’ tuples.

The three green boxes of the methodology scheme represent
the main outcomes associated with questions (Q1)-(Q3) to help
experts analyse the causes of process degradation conditions.

A. Multi-Directional Efficiency Analysis

Proposed by [10] as a derivative of the well-known data
envelopment analysis (DEA) methodology, multi-directional
efficiency analysis (MEA) is a non-parametric approach that
has been widely used nowadays (some applications are [11]–
[13]). This refined approach aims to provide further insights
about the potential improvement for each factor involved in
the model, to make a more efficient and cost-based plan to
either maximize efficiency or minimize inefficiencies.

Because DEA is restricted to the radial or proportional
contractions of inputs (or expansions of outputs) [14], in
a situation where inputs have been consumed in a certain
manner, savings will be obtained in equal proportion. Hav-
ing such limitation, a range of procedural concerns arise:
the homogeneity of the units under evaluation, the chosen
input/output set, and the measurement and weights attributed
to the variables selected [15]. Here is where MEA mat-
ters, allowing to separately determine the efficiency/slack for
each factor, presuming that all other input factors remain
unchanged, admitting diverse combinations of earns and losses
for final superior performance [16].

Hence, this part of the methodology intends to benchmark a
set of Entities based on their inputs and outputs. In particular,
in the output-oriented version, the Entities that appear at
the top of the benchmark are the ones who are capable of
maximizing outputs when inputs are somehow normalized and
comparable. In what follows, a description of the MEA model
is presented, so as the notation used from now on.

The tuple n = (e, T ) ∈ N identifies a pair Entity e ∈ E
and Time Period T ∈ T . The notation [m] designates the set
{1, ...,m} for some m ∈ N. Thus, any given tuple n ∈ N
produces O ∈ N outputs yo(n) (with o ∈ [O]) and consumes
I ∈ N inputs xi(n) (with i ∈ [I]). Looking to figure 2, the
first blue box gives information about the inputs and outputs
of the model, briefly explaining the notion of Transition of
Consecutive Periods. For each tuple n = (e, T ) and a given
set of KPIs, the inputs are just the values of the set of KPIs,
determined at the time period T , and the outputs are the values
of the same set of KPIs but at the time period T + 1, where

T + 1 means the consecutive time period after T where the
same Entity acted. Hence, the MEA score represents a relative
ranking, measuring the maximization of the consecutive KPI
results (outputs), considering the KPI levels of the current time
period (inputs).

In this mathematical model, the first 1 < D ≤ I inputs
are named discretionary inputs, i.e., variables that enter into
the optimization process, because the non-discretionary inputs
are variables that cannot be changed. Accordingly, the input
vector is x(n) ∈ RI and y(n) ∈ RO is the output vector for a
given (Entity, Time Period) tuple. Moreover, the data set W =
{w(n)}n∈N denotes the set of values w(n) = (x(n), y(n)) for
all n ∈ N .

Just to clarify what the Transition of Consecutive Pe-
riods means in practice, and according to the mentioned
notation, we bring a small example. Suppose the set of
entities is E = {e1, e2} and the set of time periods is
T = {2020 02, 2020 03}. For the specific tuple n =
(e1, 2020 02), the data set W may contain the line:

w(n) = (IDn, x(n), y(n))

where
x(n) = (OEE(e1, 2020 02), QF (e1, 2020 02)),
y(n) = (OEE(e1, 2020 09), QF (e1, 2020 09)),

and QF are the initials of Quality Factor.
Regarding the efficiency measurement of decision mak-

ing units, the Variable Returns to Scale (VRS) model
has been utilized [17], being the set defined as Λ ={
λ ∈ RN :

∑N
n=1λn = 1

}
, where N is the cardinality of N .

The MEA score for every specific observation w(n̄) =
(x(n̄), y(n̄)) is calculated by computing the following linear
optimization programs:

Problem Pα
m(w, n̄) :

minαm(n̄) such that∑
n λnxm(n) ≤ αm(n̄),∑
n λnxi(n) ≤ xi(n̄), i ∈ [I], i ̸= m,∑
n λnyl(n) ≤ yl(n̄), l ∈ [O],

Problem P β
o (w, n̄) :

maxβo(n̄) such that∑
n λnxi(n) ≤ xi(n̄), i ∈ [I],∑
n λnys(n) ≤ βo(n̄), s ∈ [O],∑
n λnyl(n) ≤ yl(n̄), l ∈ [O], l ̸= o,

Problem P γ(α, β,w, n̄) :
max γ(n̄) such that∑

n λnxi(n) ≤ xi(n̄)− γ(n̄)(xi(n̄)− α∗
i (n̄)), i ∈ [M ],∑

n λnxi(n) ≤ xi(n̄), i ∈ [I] \ {m},∑
n λnyl(n) ≥ yl(n̄) + γ(n̄)(β∗

l (n̄)− yl(n̄)), l ∈ [L],

where λ ∈ Λ, α∗
m(n̄) and β∗

o (n̄) are the optimal solutions to
the problems Pα

m(w, n̄) and P β
o (w, n̄), respectively. The ideal

point of (x(n̄), y(n̄)) is determined by the MEA output vec-
tor ζ(n)

.
= (α∗

1(n), ..., α
∗
d(n), ..., xI(n), β

∗
1(n), ..., , β

∗
O(n)).

Thus, regarding the discretionary variables, from this point
forward they are represented by the first indices d, 1 < d < I .
Thus, i ∈ [D] indicates the discretionary inputs and i ∈ [I] \ d
the non-discretionary inputs. In this setting, for a certain
observation w(n̄) = (x(n̄), y(n̄)) the methodology consists



of (|D| + |J | + 1) ×N linear programs, that comprises: one
problem Pα

d (w, n̄) for each discretionary input d ∈ [D], one
problem P β

o (w, n̄) for each of the output dimensions o ∈ [O],
and one problem P γ(α, β, w, n̄).

Therefore for a given data set W = {w(n)}n∈N , the MEA
score of n ∈ N is given by the expression

MEA(n) =

1
γ∗(n) −

1
D

∑D
i=1

xi(n)−α∗
i (n)

xi(n)

1
γ∗(n) +

1
O

∑O
o=1

β∗
o (n)−yo(n)

yo(n)

, (1)

where α∗
i (n), β∗

o (n) and γ∗(n) are the optimal solutions
of Pα

i (w, n), P β
o (w, n) and P γ(w, n, α∗, β∗), respectively.

Thus, the MEA score is obtained by the directional contri-
bution of each input and output variable. As a matter of fact,
for the input i ∈ [I] the contribution in w(n̄) is given by

mEffi(n) =
xi(n)− γ(n)(xi(n)− α∗

i (n))

xi(n)
χ[D](i), (2)

where χ[D] is the characteristic function of the set [D], which
means χ[D](i) = 1, if i ∈ [D] and χ[D](i) = 0 if i ̸∈ [D]. For
the outputs o ∈ [O] the contribution is given by:

mEffo(n) =
yo(n)

yo(n) + γ(n)(β∗
o (n)− yo(n))

. (3)

Additionally, this methodology can also provide information
about individual inefficiencies. Hence, following the ideas of
[14], for a data set W = {w(n)}n∈N , the inefficiency index
for each input i ∈ [I] and tuple n ∈ N is given by

mIneffi(n) =
∑N

n=1 γ(n)(xi(n)− α∗
i (n))∑N

n=1xi(n)
. (4)

From MEA benchmark study, it is possible to obtain three
types of information: (i) the so-called Efficient Group com-
posed of Entities with a MEA score equal to or bigger than
a defined threshold s1 ∈]0, 1]; (ii) the Inefficient Group of
Entities with an MEA score less than a fixed s0 ∈ [0, 1[
threshold; and (iii) the MEA score results for all Entities in
the data set W . Notice that Entities with MEA scores between
[s0, s1[ are not considered in (i) or (ii). Afterwards, (i) and (ii)
are labelled with the values 1 and 0, respectively, to build and
define the so-called Classification data set. The Regression
data set is constructed with the information of (iii) but both
data sets are enriched with the process variables and the KPIs
of the time period T , behaving as machine learning features.

B. Robust XGBoost Classification for the SHAP Analysis

From the Classification data set, the next step is to build
a robust classification model, picking out the best model at
the end of the train/test phase. To build both classification
and regression models (this last one shall be discussed in the
section that follows), the eXtreme Gradient Boosting (XG-
Boost) package for Python is used. XGBoost has been greatly
recognized in the well-known Kaggle competitions, due to its
great performance and fast response to classification/regression
predictive modelling problems, for structured or tabular data
sets (some recent examples of its effectiveness are [18], and

[19]). After hyper-parameters optimization, the best model
can be select as a good representation of a function mapping
features into the Efficient/Inefficient Groups classes.

For explaining the model results, allowing a sort of root
cause analysis, we use the so-called SHapleyAdditive exPla-
nation (SHAP). This method is a game-theoretic approach
proposed in [20], which aims to analyse complex models when
there’s a set of features that work as inputs and produce a set of
outputs (or predictions). The goal is to explain the predictions
by computing the contribution of each feature in the form
of a value denominated the Shapley value. The SHAP value
provides insight about how to fairly distribute the prediction
among the features. Therefore, it gives a powerful measure
about the importance of each individual feature in a model.
The larger the SHAP value, the bigger the importance of such
feature to the model explanation. Also, the interaction effect
between model features can also be computed using SHAP.

A key issue in the classical feature importance (FI) approach
in machine learning is that FI is generally not stable to small
perturbation of the features’ data. The robustness problem
has been studied thoroughly during the last decades, with a
fast-paced development of robust approaches in some con-
texts (e.g., see [21]–[23]). The great purpose of constructing
a robust ML model is to get more reliable estimates for
unspecified parameters in the presence of outliers, so the
outlined root causes and model predictions are also more valid
and trustworthy. Usually, those robust models attain smaller
performance than not robust ones, but by construction, they
are far more reliable for FI. For the above reasons, the work
from [24] combining robust ML models with XGBoost has
been studied and employed in the methodology.

Together, all these outcomes aim to provide process engi-
neers with reliable and robust root cause analysis, relative to
process performances, one of the main outputs from figure 2.

C. Robust Regression Model for Entity Performance Predic-
tion

Researchers and industrial engineers have built up a wealthy
literature on regression models and their applications to real-
life cases. Regression [25] provides an estimation about the
relationship between a set of dependent and independent
variables for two big purposes: (1) to infer causal relationships
between these variables to enable the identification of the root
causes of a problem and (2) to predict future events based on
the variables information, a usual practice in machine learning.
Nevertheless, the major pitfall of some existent regression
approaches is their lack of robustness to data outliers and
influential observations (common features of training sets).
Here, the aim of having a robust regression model for the
MEA score is to advise and warn manufacturing line managers
about future entities performance fluctuations based on the
most important features identified by the previous classifier +
SHAP approach and taking the robust XGBoost model with
the best optimized parameters for the fixed evaluation metric.



III. USE CASE OF A PORTUGUESE PORCELAIN AND
CRYSTAL MANUFACTURING COMPANY

The methodology presented in the previous section is gen-
eral enough to be applied to numerous situations. Howbeit,
to see its applicability potential, we choose a case where a
continuous improvement action plan has already been applied,
with success, with the aim of showing that a deep data-
driven RCA approach can give further useful information than
classical approaches. The following use case characterizes
a crucial factory process of Vista Alegre Atlantis S.A., a
Portuguese leader company that manufactures porcelain table-
ware, decorative pieces, high-quality glass and crystal. The
company is a global reference for manufacturing one of the
purest crystals in the world and for earning numerous design
awards internationally. Their top priority has been closely
devoted to final product quality, keeping with very high quality
and product conformity standards.

After many years in the market, nowadays, the company is
trying to balance excellent final product quality with excellent
process quality. Manufacturing line processes have been anal-
ysed, and several improvement projects conducted. Recently
due to a moderate rate of product rejections by conformation,
a Traycasting machine (nomenclature given by the company)
was intervened. The problem was identified at the 10th week
of 2019, and after a long period of problem study and
planning, the quality team implemented a set of improvement
actions. The Plan-Do-Check-Act (PDCA) methodology for
problem-solving was followed, and the results of implemen-
tation assessed at the Check stage. Despite achieving several
improvements, after final evaluation it was clear that a deeper
root cause analysis of the problem data was missing to induce
more effective improvement actions. Thus, according to the
methodology designed in figure 2, the first step was to define
the KPIs (see Table I) and the process variables (see Table II).
Due to production process confidentiality, the company did not
reveal the real definitions of Q1, Q3, Q8, Q10 in Table II, so
a general description is given.

At Table I, n refers to the number of shifts that operated in
a certain week. Each shift lasts for about ShiftTotalT ime
seconds, and the TheoTC corresponds to the theoretical cycle
time of the product family. A data set with all the required
data for the process variables and for the KPI calculations,
aggregated weekly, from week 2 of 2020 to week 6 of 2021,
was extracted from the SQL system of the company.

TABLE I: KPIs mathematical formulas

KPI Mathematical Formula

OEE
∑n

i=1
[Produced−NOK]i·TheoCTi

ShiftTotalT ime

Quality Factor
∑n

i=1
[Produced−NOK]i

Producedi

TABLE II: Quality process variables

Process Variable Description
Q1 Issue 1
Q2 Manufacturing defect
Q3 Issue 2
Q4 Crack defect
Q5 Defect by presence of plaster
Q6 Issue 3
Q7 Air bubble defect
Q8 Issue 4
Q9 ”Others”
Q10 Issue 5
Produced Produced parts
NOK ”Not Ok” produced parts

A. Plugins to calculate KPIs and extract process variables

To generate the data from the company data
sets, three Python plugins were implemented. Each
plugin receives a specific Entity and Time Period:
(workTeam,workShift, partReference), (week, year).

The first plugin filters the data set by Entity, making it
possible to compute the KPIs (OEE and Quality Factor). The
second plugin generates the process variables, also filtering
the data. Afterwards, a plugin computes the number of parts
that came out of production for Q1 to Q10 separately.

B. Results discussion

The methodology was employed to the Traycasting process
data set, and results are displayed on figures 3-9.

Fig. 3: MEA score distribution for all benchmarked entities.

As mentioned earlier, the MEA score is a relative bench-
mark value, between zero (less efficient) and one (most
efficient), used in our situation to rank Entities that were able
to improve the KPIs of the next session, when the KPIs of
the current session were (by the algorithm) normalized to
have a comparable ranking between entities. Thus, when we
see a small MEA value, it means that the entity was not
able to improve its performance at that point in time, i.e.,
it does not mean that its performance decreased. Efficient
entities naturally will have more difficulty improving their
performance (which is already good), since they are near to
the process’s upper limit of production. Nevertheless, in the
scope of this work, our interest is to capture the entities that



still were able to improve and then extract the main reasons
for such events.

The MEA score distribution (figure 3) shows that some
entities were still able to make improvements, having six
entities that attain the maximum score of 1.

Fig. 4: Mean MEA score fluctuation for all benchmarked
entities from week 2 of 2020 to week 6 of 2021; some weeks
are missing since the selected products were not produced.

Regarding the MEA variability along time, figure 4 displays
the average MEA scores of all benchmarked Entities for
each week year. Four pronounced peaks can be found in
the graphic, meaning that for several weeks straight, the
average entities’ performance score increased (e.g., see mean
MEA score fluctuation between 2020 13 and 2020 17). As
expected, after a significant improvement is quite hard to
keep improving, so a non-increase or even a decrease in the
variation of performance can happen. Anyway, globally, the
KPI difference between t + 1 and t is around 2.053 for the
OEE, and 0.704 for the quality factor, having an accumulated
value in the study period of 238.52 for the OEE and 81.682
for the quality factor; which seems to be a good result.

Figures 5 and 6 provide a more particularized analysis. The
first graphic displays the entities’ performance for each team
separately and the second one for each product. Indirectly,
both give information about the best work teams and best
products in terms of demonstrated performance, where ab-
normal performance scores may also be explored. These so-
called performance outliers provide a second level of RCA of
the process. In particular, team T1 attain the majority of the
improvements, T3 had only one full efficient occurrence that
seems like an outlier, and T2 was completely steady concern-
ing improvement actions. In a different perspective, figure 6
shows that parts P2 and P4 are the most problematic. It is also
clear that higher OEE values enable further improvements and
difficult parts only allow entity improvements at the minimum
values of OEE, see P2 and P3 at OEE min. With the
above information, experts can look at these specific identified
situations, dig into them, and derive good/bad practices for
future improvement plans.

After a grid hyper-parameter optimization of the XGBoost
classifier, the best model attained (macro and weighted) pre-
cision, recall and F1 of 89%, and accuracy of 91%. Notice

that the problem is a balanced binary classification with 45%
vs 55%. These evaluation metric values were considered good
enough to assume that the SHAP analysis is relevant.

Fig. 5: Relationship between the individual MEA scores of
each Work Team T1, T2, T3 and the calculated OEE.

Fig. 6: Relationship between the individual MEA scores
obtained for each Part Reference P1, P2, P3, P4, OTHER and
the calculated OEE.

Recall that SHAP analysis will be a RCA for the difference
between the Efficient Group (G+) of entities and the Inefficient
Group (G−) of entities. Figure 7 displays the SHAP variance
importance plot, drawn with all the dots of the train data.
These variables are ranked according to their importance to
the model in descending order. The color represents whether
the value of that variable is high or low for an observation
(red or blue, respectively). So, in terms of importance, a high
OEE value has a positive impact in order to be in the G+

group (meaning it has a positive SHAP value; see the X-axis).
Focusing on metrics with a SHAP value > 0.5, we conclude
that G+ prefer to have lower values of Quality and Produced,
which is also marked in the opposite way, and higher values
for these variables push entities to the G− group. It is very
intriguing to identify this competing behaviour between OEE
and Quality. Another interesting result is the fact that process



variables Q1-Q6 and Q10 do not play a significant role for an
entity to be in one of the groups G+ or G−. So, the percentage
of those product defects have similar patterns in both groups
and CI actions on them would not produce significant process
performance improvements.

Fig. 7: Variance importance plot computed with SHAP.

Figure 8 shows in more detail the partial dependence plot of
OEE and Quality regarding the groups allocation. It is clear
that it displays an approximately linear with negative slope
relationship between both KPIs. So, oppositely to what com-
pany engineers would assume, efficient entities are associated
with a high OEE value and a medium-low Quality value.

Fig. 8: Quality and OEE relationship according to SHAP
analysis.

C. Predicting Entities Performance

Another outcome of the approach described in figure 2 is the
possibility of deploying a machine learning model to predict
the entities’ MEA score at their future working session, every
time they finish the job. The features used for the regression
model were only the current session values of

(OEE, Quality, Produced),

which are the three more relevant features in the SHAP
analysis. Applying standard cross-validation of 70%-30%,
figure 9 compares the MEA performance results of the test
data set with the predicted outcomes of the XGBoost robust
regression model. The attained RMSE metric is 0.09, which is
quite good for the problem at hand. This level of error allows
a good margin of confidence in the model’s application, giving
production managers another tool for team planning.

Fig. 9: MEA score prediction results of next session entities
performance by the robust XGBoost regression model.

IV. CONCLUSION

In this work, an innovative approach was presented, merging
techniques from different research areas to derive a robust
approach of root cause analysis (RCA) for manufacturing
processes. A key ingredient is the notion of entities that act
on processes and their relative ranking regarding their KPI
performance on the next work session based on the KPI
performance of the current work session. A use case in the
Porcelain industry sector was explored, showing the approach.
Even using a data set compromising already a continuous
improvement plan with moderate success, the approach was
able to identify further potential issues of improvement. A
clear limitation is the fact that the applicability of the approach
depends on the set of process variables chosen by the expert,
since they become features that may induce low values of the
machine learning evaluation metrics of the classification model
(that is the base of the SHAP analysis). Another concern,
is that the approach does not deal (automatically) with the
possible existence of unbalanced classes, whereas in our use
case such was not a problem. The above issues will be
look at in future studies, where the integration and fusion
of data with other root cause analysis approaches may be
discussed, and the implementation of an automatic selection
of (relevant) process variables may be constructed. This work
is intended to be deployed to production testing as a set of
micro-services, communicating with Kafka brokers connected
to the manufacturing execution system.
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