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Abstract—Data-driven applications are becoming more and
more ubiquitous throughout the manufacturing industry. The
decision of which projects to start often comes from the input of
process experts who identify a concrete potential for improvement
in a certain area. However, a different approach may be taken
when it is not entirely clear where to start looking for patterns or
potential information which can trigger continuous improvement
activities. This is specially relevant in manufacturing processes
with a high level of maturity and stability. In this article,
the authors propose a generic approach for conducting impact
analysis with a use case which aims to deconstruct the Overall
Equipment Effectiveness (OEE), a quite known Key Performance
Indicator (KPI), in a manufacturing production line from a
Bosch plant located in Portugal. This methodology is focused on
identifying the best and worst scenarios by creating a ranking
and subsequently pinpointing possible causes, identifying best
practices and devising strategies to deal with these non-optimal
scenarios. The methodology can be seen as an alternative to
complex statistical hypothesis testing by relying on measuring
several distribution differences.

Index Terms—Impact metrics, continuous improvement, indus-
try 4.0, process deviations, root cause analysis

I. INTRODUCTION

The quest for optimization has been a long one indeed in the
manufacturing industry. In order to make manufacturing more
efficient and cost effective, different methodologies have been
devised to find the next area where to deploy improvement
measures. In the literature, one can find countless examples
of such strategies (e.g. Six Sigma) with very well defined
stages and implementations, see [1]. These methods usually
combine the expertise of dedicated professionals and some
data. They also represent a significant overhead due to all
the data collection involved, see [2]. Therefore, it would be
relevant to reflect on the hypothesis of whether a mainly data-
driven approach can be used to identify potential areas for
improvement, see [3]. Interesting approaches, albeit different
from this one, have been developed in [4] and [5].

The idea is thus that this approach can be applied by
someone who is not in any way an expert on the subject.
process experts will still intervene yet will do so in very well-
defined points in time. This allows for them to be involved
only when necessary and grants them the ability to focus

on improvement activities where their expertise is paramount.
Looking for what to improve next can thus be delegated
to someone with data analysis skills and can be automated
afterwards. This approach relies on the definition of scenarios,
which are simply aggregations of one or more factors which
are believed to have an impact on the process being analysed.
After both the best and the most problematic scenarios are
identified, a positive deviance approach (see [6]) will be used
to understand what distinguishes the top ranked scenarios from
the bottom ranked ones. By the end of this work, a complete
approach for the analysis of the impact of the various scenarios
will have been explored and conclusions drawn.

II. METHODOLOGY AND THE OEE USE CASE

The main goal behind this work is to devise a strategy
which allows to look for improvement opportunities within an
manufacturing process measured by a specific management
measure. This approach is actually a component of a much
broader pipeline as depicted in Figure 1. The method described
in this article is represented as the Root Cause 1 (RC1)
component and complements the approach RC2, see [7]. The
basis is the DMAIC framework (Define, Measure, Analyse,
Improve, and Control), see [8] and [9].

In order to test the proposed approach, a data set containing
real production data of a Bosch Manufacturing Production
Line (MPL), located in Portugal, with the OEE data for
shifts over the period of 9 months was used. This data has
been stored and outputted through a Manufacturing Execution
System (MES). The OEE was the chosen KPI for this use
case since it is generally acknowledged as being the industry
standard for measuring performance in MPLs. However, other
KPI, metric or value could be used. Besides this, data on
the type of shift plus the Target Cycle Time (TCT) were
used as scenario variables. The TCT is a good candidate for
a scenario since it condenses the information of both the
product type (e.g. which product family is being produced)
with the production scenario being carried out (e.g. the number
of workers allocated to the line in that shift). Later on, we
can add additional (process) variables which will provide



Fig. 1: Scheme representing the integration of the approach (RC1) in an automated data-driven DMAIC methodology.

more information in an effort to unveil the causes behind
efficient/non-efficient behavior.

Data sets were split by month (time periods) before being
inputted into the plugin being used for this data processing.
This allows for the creation of an array of scenarios to be
tested, as explained in subsection A.

The following subsections describe in more detail the
methodology presented in Figure 2, where the gray squares
account for the subsection identifier where it is discussed as
a convenience to the reader.

A. Impact determination

This method was designed with the intent of being as
generic as possible and with that in mind, the starting point
became the Probability Density Function (PDF) fKV of a
certain metric, KPI or factor variable; what from now on we
call generically a key value (KV). This abstraction allows for a
purely statistical interpretation of the data at hand and enables
all sorts of scenarios to be devised and tried out.

With this being said, the first step in the calculation is to list
all the possible scenarios {S1, . . . , Sn}, for n ∈ N, that the
process experts would like to test. This can thus be interpreted
as a highly exploratory approach. These scenarios will be ap-
plied as a KV filter made on the KV values by a combinations
of n indicator functions of scenario variables {V1, . . . , Vm},
with values previously converted into categorical labels. In
detail, each scenario variable Vj has a set of unique values
{Cj

1 , . . . , C
j
kj
}, which generate the scenarios

Si = (C1
k1
, C2

k2
, . . . , Cm

km
) (1)

as a sequence of values that the (ordered) scenario variables
{V1, . . . , Vm} have at the current observation. Then, for each
time period T , a scenario Si induces a data filter on the KV
data, generating a new KV variable that has the PDF denoted
by fT

KVi
. This establishes a generic baseline for comparison

of the performance of the overall data set versus the one of
the scenario being studied.

Fig. 2: Methodology general scheme (colors follow the legend
from Figure 1).



Mathematically, we assume that variables KVi are real-
value random variables that are absolutely continuous or
discrete and, in this case, the probability density function is
defined by

f(y) =
∑
x∈A

p(x)δ(y − x), (2)

where A is a countable subset of the probability measurable
space, p : A → [0, 1], and δ is the Dirac measure. We do not
deal with singular distributions. From here, we may calculate
the values

QT
i (p) = inf

{
x ∈ R : p ≤

∫ x

−∞
fT
KVi

(y) dy

}
, (3)

where p ∈ [0, 1]. Applying the same idea to the KV variable,
without any scenario filtering, we also have

QT
0 (p) = inf

{
x ∈ R : p ≤

∫ x

−∞
fT
KV (y) dy

}
. (4)

The definition (2) allows to deal with data sets (e.g., data
collected by a MES) and definitions (3) and (4) behave as
generalizations of percentile functions, where the correspond-
ing cumulative distribution function may be relaxed to be just
non-decreasing (i.e., may be piecewise constant).

Since, for each time period T , a scenario Si behaves as a
data filter of the KV data, we can associate a weight wi as
the percentage of observations that result from applying such
filter. Fixing a small ϵ > 0, for each scenario Si and time
period T , the impact force of the scenario on the KV value
for a given probability p level is defined by

IFT (Si, p) =
wi

∫ p

p−ϵ
QT

0 (y)−QT
i (y) dy∫ p

p−ϵ
QT

0 (y) dy
. (5)

The multiplication by wi accounts for the fact that different
scenarios can stem from largely different amounts of data.

Finally, we choose a finite set of probability levels
P = {p1, p2, p3, . . . } and define the scenario impact index
SIT (S) on the values of KV by

SIT (S) =

∑
pj∈P IFT (S, pj)

|P|
(6)

where |P| denotes the cardinality of P .
For a better understanding of the reader, the calculations

(2)-(6) for an example data set would shed some light on
the purposed method. However, such is not viable since this
approach requires a significant number of observations since
it deals with filtrations of distributions that need to be also
valid distributions.

B. Scenarios Ranking by Impact Factor

The approach described before generates a impact factor
ranking, allowing the extraction of the top N scenarios and the
worst N scenarios. The results for the use case were condensed
into the heat map shown in Fig. 3.

The Y Axis depicts the scenarios being tested. Scenarios
A, B and C refer to the type of shift - morning, afternoon
and night. However, this association has been scrambled for

Fig. 3: Heatmap of the scenario impact index. Top performers
are shown in green while bottom ones are shown in pink.
Blank cells refer to scenarios which do not feature in neither
the top or bottom ranking having been removed for clarity
purposes.

anonymity reasons. Scenarios with three digits refer to the
TCT whereas scenarios combining both the shift type and
TCT follow the notation TCT ShiftType. TCTs have been
anonymised through an offset. Months are depicted in the X
Axis. The colour legend depicts variations within the +15%
to the -15% range. Scenarios were also sorted in a way that
allows for an easier heatmap readability. A heatmap is an
adequate way to display these sort of results because it allows
for both pattern identification and a higher sensibility to the
ranges of the values being interpreted.

Based on the results displayed in Figure 3, one can conclude
that:

• Reducing the amount of available scenarios would prob-
ably lead to a much higher stability in the MPL i.e. less
performance fluctuations;

• Shift A started off the year well but then displayed subpar
performance for most of the remaining part of the year;

• Shift B is a systematic top performer throughout the year;
• Shift C displays the higher performance variability.
• Regarding the TCT, e.g. 376 is perceived as a difficult



TCT and TCT 460 as a good TCT in production.
• It is interesting to notice that the pair 300 A compensates

the impact of the pair 300 B.

C. Results validation with experts

These results have been presented to those responsible for
production planning in this MPL and they have been perceived
as a correct depiction of what has happened throughout this
time period. The benefits of the approach were readily under-
stood since a purely numerical method mirrors the experience
that these professionals have. Process experts have specifically
highlighted the potential of the usage of this tool in close
loop with PDCA (Plan-Do-Check-Act) improvement cycles.
Since the scenarios to be improved have been identified, one
can move onwards to the next step where the explainability
of these results is attempted by relating them with process
variables.

D. Variables relevance determination

After the ranking of the scenarios presented in the section
above, the focus is now on enriching the initial data set
with (experts determined) process variables, which will allow
for some best practices to be identified. In this particular
case, 3 variables were selected: a variant of the First Pass
Yield (vFPY), the Quality Factor (QF) and the amount of
changeovers (CH). The variable vFPY is calculated as

vFPY =
Nº OKs on first try

All tests done
. (7)

The reason why this variable amounts for a variant is that
the denominator should include the number of unique parts
being produced, not the overall number of tests done. This
translates into values which are actually lower than the actual
FPY.

Up next, we have the QF which is one of the OEE factors.
The QF is higher than the vFPY or equal to it since it takes
into account all OKs and not just the ones on the first try. It
is defined by:

QF =
Nº OKs

All tests done
. (8)

The CH variable acts as a measurement of the number of
different references produced throughout the shift in order to
assess whether the diversity of references influences the overall
performance. This metric is rather different in the sense that
it is simply an integer, not a ratio. In order for it to be in the
same range, it was normalized.

In the next step, a set of functions where chosen to de-
termine: centrality (µ for the mean), variability (σ for the
standard deviation), asymmetry (s for the skewness), and
information level (E for the entropy).

1) Metric Calculations: From the scenario ranking, we
have determined the top N scenarios T and the bottom N
scenarios B. Those imply the generation of two data filters
over the process variables generating two sets of new variables

XT ∈ {vFPYT ,QFT ,CHT }, (9)

XB ∈ {vFPYB,QFB,CHB}. (10)

Then, the metrics associated with the chosen functions can be
computed as

δh(X) =
h(XT )− h(XB)

h(XT )
for h ∈ {µ, σ, s, E}. (11)

Table I resumes the metrics values obtained for the use case.

TABLE I: Comparison metrics across variables

Variable δµ δσ δs δE
vFPY 2.47% -69.13% 43.48% -66.38%

QF -0.42% 6.98% -38.89% -23.03%
CH -2.38% 5.87% 13.54% 12.33%

2) Metric Calculations Cut-Off: From the comparison met-
rics computed on the previous step, a cut-off procedure is
established based on a parameter ϵ ∈ [0, 1] that is selected
by the user. The procedure is done in two steps: (1) find the
relevant metrics; and (2) within each relevant metric, choose
the relevant variables.

In mode detail, the first step consists in calculating cut-off
values ζh, for h ∈ {µ, σ, s, E}, satisfying

ζh = (|max(δh)| − |min(δh)|) |max(δh)|, (12)

and identifying the set of relevant metrics h defined by

Rϵ = {h ∈ {µ, σ, s, E} : ζh > ϵ} . (13)

In this case, the parameters ϵ = 0.1 and ϵ = 0.3 were used,
just for comparison reasons. These cut-off values produces
Table II. Hence, we have

R0.1 = {σ, s, E} and R0.3 = {σ,E}. (14)

Having chosen which metrics h are relevant, the next step
follows.

TABLE II: Cut-off values, where blue values are relevant for
ϵ = 0.3 and ϵ = 0.1; and cyan values are relevant just for
ϵ = 0.1.

parameter ζµ ζσ ζs ζE
ϵ = 0.1 0.0005 0.4375 0.1302 0.3588
ϵ = 0.3 0.0005 0.4375 0.1302 0.3588

The second step consists in normalizing the absolute values
from Table I in respect to the maximum values of each column
since we want to identify the maximum discrepancies, by
defining

Rel. δh(X) =
|δh(X)|

|max(δh)|
. (15)

The results of such calculations are presented in Table III.
Now relevant variables are the higher ones. To choose which

ones to mark, we use the condition

Rel. δh(X) > 0.75 (1− ϵ). (16)



Equation 16 when valid, is used to assess whether a variable X
is labelled as relevant or non-relevant. Values of δh(X) that
do not satisfy the equation are ignored. This is an heuristic
cut that allows us to ensure that values that are (at least) 25%
below the maximum are always selected. In particular, for ϵ =
0.3, we have Rel. δh(X) > 0.525; and, for ϵ = 0.1, we have
Rel. δh(X) > 0.675. Notice that the lower the ϵ, the fewer
variables are considered since the variables appearing with
smaller parameters also are included in higher parameters.

TABLE III: Relative delta values per variable and
metric, where blue values are relevant for ϵ = 0.3
and ϵ = 0.1; and cyan values are relevant just for
ϵ = 0.1.

Variable Rel. δµ Rel. δσ Rel. δs Rel. δH
vFPY 1.0000 1.0000 1.0000 1.0000

QF 0.1681 0.1010 0.8944 0.3470
CH 0.9626 0.0849 0.3114 0.1857

Using the input from Table II, Table III can be used
to acknowledge that the vFPY is the main contributor to
asymmetry and information level for the overarching KPI in
this study, the OEE. Whether this contribution is positive
or negative, this will be assessed using the sign of the data
from Table I. Although there are also values above the cut-
off value, these must be ignored since only the variability and
the information level were considered relevant through this
method. The relative delta for the mean of the vFPY is one
such example having been ignored due to not passing the cut-
off metric - roughly meaning that the difference between the
mean of the top N observations compared with the mean of
the bottom N observations is not significant.

For the vFPY variability and information level, Table I
displays for both a negative sign. In practical terms, this means
that within the bottom performers group, the vFPY displays
the most variability and less information level (entropy). This
is another way of saying that the local (from shift to shift)
and global variability of the vFPY has a significant negative
impact in the worst performers, composed of scenarios 300 B,
C, 460 1, 460 C, 460. In order to improve the OEE, measures
should be taken in order to reduce the vFPY variability. The
results of this analysis are summarised in Table IV.

TABLE IV: Results between KPI and positive/negative impact
(ϵ = 0.1 and ϵ = 0.3)

Impact Centrality Variability Asymmetry Inf. Level
Positive - - vFPY -
Negative - vFPY QF vFPY

It is important for one to realize that this analysis is
dependent on the choice of ϵ. Table IV shows the impact of
choosing different ϵ. Even though ϵ = 0.3 seems to convey
more information since it compounds the values from ϵ = 0.1,
it highlights variables whose components have a significant
lower impact.

E. Scenarios Drill-down

Even though it is now known that the vFPY is one of
the process variables with the most impact on the negative
performers group, it is still not completely clear where this
happens or which workstations from the MPL are contributing
the most to this phenomenon. Therefore, in this section, this
question will be addressed.

A new dataset was prepared using data for each workstation
with the number of successful (OK) vs unsuccessful (NOK)
processes in relation to the target part count. The scenarios
which include the top and bottom performers are exactly the
same having originated from the first step of the methodology.
Table V displays the ratios cut-off metrics, indicating that
all statistics are relevant. Table VI features the variables
representing the NOK ratio per stations. The stations are
uniquely identified by their variable code for anonymization
purposes. An ϵ of 0.3 was used.

TABLE V: Cut-off metric for minimizing variables

Cut-Off Centrality Variability Asymmetry Inf. Level
ϵ = 0.3 3.938 40.069 34.514 1.6170

TABLE VI: Relative delta values for the minimizing group

Variable Rel. δµ Rel. δσ Rel. δs Rel. δH
v07 NOK 0.026 0.005 0.000 0.000
v15 NOK 0.576 0.300 0.390 0.838
v17 NOK 0.214 0.053 0.045 0.524
v19 NOK 0.177 0.021 0.268 0.030
v21 NOK 0.155 0.018 0.323 0.798
v24 NOK 0.103 0.021 0.033 0.492
v26 NOK 0.000 0.000 0.140 0.610
v28 NOK 1.000 1.000 1.000 1.000
v31 NOK 0.249 0.186 0.168 0.415
v33 NOK 0.143 0.082 0.069 0.174

For the variables which are to be maximized, the variability,
asymmetry and information levels are relevant criteria for a
cut-off value of 0.525 as seen in Table VII.

TABLE VII: Cut-off metric for maximizing variables

Cut-Off Centrality Variability Asymmetry Inf. Level
ϵ = 0.3 0.025 0.779 3.064 0.458

In this group, the relative delta values are more scattered.

F. Drill down variables relevance determination

From these, we can convey the following results:
• Station represented by variable v28 displays values im-

plying it should be looked into due to topping all the
relevant delta values.

• The entropy of the distributions is a focus topic on almost
all stations indicating high local variability in the OK
percentages.

• Stations represented by variables v30 and v32 have the
same manufacturing process - however, variable v32



TABLE VIII: Relative delta values for the maximizing group

Variable Rel. δµ Rel. δσ Rel. δs Rel. δH
v01 OK 0.276 0.121 0.087 0.836
v02 OK 0.235 0.287 0.043 0.753
v03 OK 0.000 0.484 0.131 0.000
v04 OK 0.438 0.480 0.064 0.445
v05 OK 0.478 0.458 0.066 0.442
v06 OK 0.478 0.458 0.066 0.442
v08 OK 0.387 0.000 0.186 0.638
v13 OK 0.172 0.017 0.191 0.654
v14 OK 0.411 0.042 0.147 0.870
v16 OK 0.510 0.012 0.127 0.780
v18 OK 0.440 0.030 0.138 0.760
v20 OK 0.411 0.0570 0.142 0.762
v22 OK 0.429 0.065 0.169 0.744
v23 OK 0.502 0.026 0.162 0.796
v25 OK 0.443 0.037 0.149 0.751
v27 OK 1.000 0.544 0.000 0.546
v29 OK 0.450 0.130 0.102 0.773
v30 OK 0.053 0.204 0.557 0.029
v32 OK 0.707 1.000 0.351 1.000

displays a higher level of global and local variability in
relation to its counterpart.

• The station represented by variable v27 (whose NOK
value also was identified above) also possesses high local
and global variability.

• The station represented by variable v01 also displays a
relatively high entropy value. This can be due to the fact
that this is the first station of the line and the rhythm
oscillates at a higher level in first stations, see [11].

III. CONCLUSION

In this article the foundations for a best practices identi-
fication method as well as a root cause analysis one were
established. Using statistical methods, it was possible to show
its usefulness by process experts and ease of use by non-
experts. Important conclusions have been achieved throughout
the study and the authors view this as a compelling approach
which deems further research necessary. In particular, an
extended study of the MPL can be done by enriching the set
of process variables in order to capture even more relevant
situations at the workstation level, beyond the use of only OKs
and NOKs. Another matter of improvement is how to translate
the interpretation of above values to a non-expert language in
a simple and unified way.

With that being said, future research directions include the
ability to provide specific recommendations to the user based
on fuzzy inference (to account for uncertainty) and also the
joining of methods RC1 (this one) with RC2 (described in [7])
as previously mentioned.
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