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Abstract. Industry 4.0 takes advantage of data-driven approaches to
improve manufacturing processes. Root cause analysis (RCA) techniques
are naturally required to support the identification of reasons for (in)effi-
ciency processes. However, a limitation of classical RCA methods is
their sensibility to data perturbations or outliers. Such sensibility phe-
nomenon requires the implementation of robust RCA approaches. Here,
methods of graph theory (queue directed graphs), operational research
(multi-directional efficiency analysis), machine learning (extreme gradi-
ent boosting), and game theory (Shapley analysis) are merged together,
in order to obtain a robust approach that is able to benchmark the work-
ers acting on a discrete manufacturing process, determine the relevance
level of process variables regarding a worker belonging to the (in)efficient
group, and predict the worker performance variation into its next work-
ing session. A use case at Bosch ThermoTechnology is analysed to show
the methodology’s applicability.

Keywords: Discrete Manufacturing Processes · Benchmarking · Machine Learn-
ing · Root Cause Analysis

1 Introduction and Previous Work

Root Cause Analysis (RCA) can be defined as a set of methodologies for iden-
tifying the (fundamental) causes/factors of a problem, based on the analysis
of deviations from a standard reference, in order to prevent its future occur-
rence, reduce overall process variability, and/or optimize costs. For RCA, three
main types of approaches can be found in the literature: quantitative, quali-
tative and mixed. The most addressed and also the most used by companies’
continuous improvement teams (namely in the manufacturing industry) are the
mixed approaches. They comprise tools brought by the Six Sigma area, such
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as the 5 why’s, Fault-tree Analysis, Ishikawa Diagram (also known as Fishbone
Diagram), Pareto Chart, 8Ds, Failure Mode and Effects Analysis (some recent
studies are [1, 2]). However, after more than 10 years of the "Industry 4.0" Era,
where companies already have systems capable of extracting data from their
manufacturing processes, most continuous improvement activities, namely root
cause analysis, continue to be developed through conventional methods, such as
manual data analysis, or the utilization of basic data mining tools [3]. These
conventional methods conducted by process experts are time-consuming and
provide results with high variability [4]. However, the reason why this still hap-
pens is quite simple to explain. Many companies dealing with big data still lack
human resources with the expertise of applying data-driven methodologies with
some level of machine learning to automate (and therefore, speed up) their RCA
processes.

Hence, one of the aims of any production manager is to increase the pro-
ductivity of their production processes. For such, understanding the reasons for
deviations in (current) performance is fundamental to devise effective counter-
measures for continuous improvement. Manufacturing production lines (MPL)
that are balanced, meaning that the duration of jobs are designed to minimize
bottleneck workstations and maximize operators’ work time usage, are partic-
ular difficult since by construction the deviations are smoother and difficult to
grasp.

In this work, we consider the problem of applying an effective and scientific
valid data-driven approach to answer the following research questions:

(Q1) Is it possible to identify significant performance variations in a balanced
MPL by evaluating process KPIs, metrics and/or variables associated with work-
ers’ consecutive work sessions?

(Q2) How can we determine the causes (variables) that led to high/low per-
formance deviations?

(Q3) Is it possible to predict future performance variation based on current
calculated process metrics?

In what follows, we introduce some relevant works, found in the literature,
within the scope of automatic approaches to RCA for manufacturing lines. An
automatic approach is understood as a sequence of algorithms/methods that
follow a set of implicit/explicit rules measuring relevance, and which are capable
of extracting in-depth information from real data without human intervention,
giving variable relevance scores with respect to a process of study.

In fact, there are still few studies that address automatic RCA in manufac-
turing production problems and the majority focuses on quality problems. In [5],
it was developed an approach for constructing digital cause-and-effect diagrams
with quality data, where the K-means algorithm is implemented to cluster the
problems and causes, and then a classification model based on a random forest is
employed to classify cause text into the main cause categories. Similarly, [6] also
follow the idea of constructing an automated version of a well-known lean manu-
facturing tool, the Value Stream Map (VSM), for multi-varieties and small-batch
production, with timely on-site waste identification and automated root cause
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analysis. In addition, [7] developed a two-stage automatic root cause analysis
(ARCA) for the phenomenon of overlap in manufacturing. The authors pro-
pose a first stage of “Problematic Moment Identification" (PMI), where relevant
data is selected for the analysis by using a Exponentially Weighed Moving Av-
erages control chart. Then factor ranking algorithms were developed and used
to avoid hiding highly correlated factors and enabling information on equally
probable root causes. The factor ranking algorithms are Co-Occurrences (CO),
Chi-Square (CS) and Random Forest (RF). Lastly, [8] presents a big data-driven
root cause analysis system including three modules of (1) Problem Identification
(to describe multiple and different types of quality problems using data min-
ing methods), Root Cause Identification (using K-Nearest Neighbor (KNN) and
Neural Network (NN) classifiers to automatically predict root causes), and Per-
manent Corrective Action. The authors validated the approach by using data
from an automobile factory.

2 Methodology and Mathematical Model

Fig. 1: A data-driven methodology for
Root Cause Analysis.

For the problem addressed in this work,
it was necessary to implement a more
adjusted methodology capable of encom-
passing not only quality variables but also
variables related to the workers them-
selves, some of them calculated in a very
particular way, with the support of a for-
mal abstract structure, as will be ex-
plored in Section 3. Also, none of the
RCA methodologies found in the litera-
ture adopts a robust approach. Robust-
ness is very important to get more reli-
able estimates for unspecified parameters
in the presence of outliers or data pertur-
bations, for more trustworthy root cause
identification and model predictions.

In particular, the approach in this
work generally follows the methodology
introduced recently by the authors in [9]
and applied to a Ceramic Industry manu-
facturing, which has quite different char-
acteristics in comparison with the ones
of the manufacturing process of our use
case at Bosch. The methodology steps are
schematically described in Figure 1.

The approach intends to determine the
causes, i.e., the variables of workers, ma-
chines or processes of a manufacturing
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production line that most contribute to an entity being considered efficient or
inefficient, according to the KPI values of consecutive work sessions and also
predicting future performance variation scores. As displayed by the figure, the
approach fuses an operational research method (multi-directional efficiency anal-
ysis), a machine learning method (extreme gradient boosting), and a game theory
method (Shapley analysis), in order to obtain a robust approach for RCA. Each
step of the methodology has been applied to the problem introduced in the next
section, and the main results are displayed in Section 4.

First, a MPL is chosen and the notion of "entity" is defined (in this problem)
as a worker, who operates on the MPL during a certain work shift. Each worker
applies a set of actions to a set of workstations in the MPL. The layout and
flows in the MPL can be modelled according to a formal abstract mathematical
structure, called Queue Directed Graph (QDG) (see the bottom block of Figure 2
and [10, 11]). This mathematical structure consists of nodes (in the case of an
MPL means workstations) that act on tokens (i.e., parts or products), which
in turn may have to wait in queues if nodes are busy processing the previous
tokens.

Fig. 2: Representation layers of a MPL segment - retrieved from [11].

The advantage of the QDG is that it is capable of representing any type
of MPL with a discrete production environment, so this work can be easily
extended to other use cases of discrete manufacturing. Additionally, the QDG
is based on minimal information (MI), which is meant as the most elementary
information from production line operations, enough to autonomously generate
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the abstract manufacturing layout and calculate metric variables, for example
the so-called AMPM (the Average Measured Period of time a workstation is
occupied processing a part), and the AQPM (the Average Queue Period of time
a part spends at the queue of a workstation), see [11] for further details about
MI and the mathematical formulas of those metrics.

Commonly, the notion of workstations’ Processing Time is associated with
time readings obtained by hardware devices on the workstations, which are fur-
ther sent to the manufacturing execution system (see first block "MES" of Fig-
ure 2). This metric comprises the amount of time between the beginning of the
first operation in a workstation and the moment the product leaves because all
tasks, in that workstation, were completed. A QDG gives a similar metric, the
so-called Measured Time, described in the same figure. It comprises the amount
of time between the moment a part/product leaves the queue of a workstation
and the moment the product leaves the workstation after all tasks have been
performed. So, by setting the difference between the Measured Time and the
Processing Time, it is possible to compute the amount of time a worker spent
to "respond" to a part in a queue, the so-called Part Response Time. Then, the
Response Time directly associated with MPL workers is defined as the average
of Part Response Times in a time period (usually a shift), see [12].

Hence, taking into account the impact that workers’ variability have on the
performance of an MPL, it seems clear to study some of the variables that may
cause such variability. In this work, these variables are designated as worker-
related variables: the Wage , the Experience Time (the amount of training
hours invested by the company and benefited by the worker), the Response
Time , and the Delay Time . The latest is a penalization value that measures
the lapse between the planned shift start time and the time a worker effectively
started working, by using a Gaussian function, defined by

DT(t) = Gσ (tb)−Gσ(t) where Gσ(t) =
1

σ
√
2π

exp

(
−1

2

(t− tb)
2

σ2

)
,

for a given standard deviation σ that accounts for the penalization curve spread.
The reason for such penalization is the fact that earlier starting workers (artifi-
cially) increase the next workstation queue and later starting workers create a
gap in the working flow, so both perturb the theoretical balancing of the line,
see [26] for data-driven simulations showing this phenomena.

Hence, both Response Time and Delay Time vary along with workers and
with different work sessions, while the Experience Time and Wage may differ
between workers, however, both values are fixed per work session (except when
certain events occur, such as pay raises, job promotions and/or job training,
where there’s an update).

Finally, global quality metrics are also added to the previous ones and in-
troduced to answer all research questions, namely the percentage of Reworks
and Quality . This work, as a continuation of a previous one based on an opti-
mization problem with a maximization function, uses the complementary values
of the AMPM, AQPM and Reworks, defined here as cAMPM, cAQPM and
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cRework (see [12] to assess the mathematical formulas). A complement of a
variable is given as the maximum possible value of the variable minus their
current value.

Further details regarding the data sets’ information used in this work shall
be discussed in the section that follows.

3 Data Characterization and Correlation

A chosen manufacturing production line (MPL) of Bosch Thermotechnology
(Bosch TT), the business unit facility of residential hot water located in Aveiro,
Portugal, is analysed through the proposed approach. At this MPL, usually 2
to 3 daily work shifts operate with a specific number of workers (shift 1 has 14
workers, shift 2 has 8 workers, shift 3 has 14 workers). The MPL is composed
by 18 workstations where each worker is assigned to either 1 or 2 of them,
depending on the shift, workers’ experience with certain machines/processes, and
even workers’ availability (although not very often). In this study, the 5 chosen
data sets contain information related to shift 1 on different time instances, so we
will be dealing with 14 entities and 5 time periods. The Response Time, Delay
Time, cRework, cAMPM and cAQPM are first calculated and then added as
new columns to each data set, which already contain information regarding the
Experience Time, Wage and Quality for each entity and time period. Although,
each data set represents a specific time period, for confidentiality purposes the
actual date is not provided here. Tables 1 and 2 provide information regarding
the statistical characterization of the data sets. In the same way, the wage and
experience are values changed by a offset to preserve anonymity. Notice that
the results obtained by the proposed methodology are not affected, since the
methods are variable translation invariant.

Although, the experts defined a set of relevant KPIs and process variables to
evaluate (as described above), a data-driven approach must follow some classical
pre-processing steps as looking for missing values (none in this case) and finding
correlation between variables, which will perturb the interpretation of the results.

Table 1: Data sets characterization (part 1 of 2) - mean and standard deviation of
the worker-related variables.

Worker-related Variables
Data set Response Time Delay Time Wage Experience Time
d01 1.16 ± 0.99 0.26 ± 0.14
d02 0.59 ± 0.45 0.17 ± 0.13
d03 0.59 ± 0.53 0.21 ± 0.14 666.21 ± 46.32 1060.71 ± 586.66
d04 0.96 ± 0.88 0.19 ± 0.15
d05 1.06 ± 0.96 0.18 ± 0.13
Units seconds per unit euros hours
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Table 2: Data sets characterization (part 2 of 2) - mean of the shift metrics plus
mean and standard deviation of the production variables.

Shift Metrics Production Metrics
data set cRework Quality cAMPM cAQPM
d01 0.726 94.07 7.10 ± 3.70 28.13 ± 10.53
d02 1.260 97.98 7.28 ± 3.44 11.05 ± 05.80
d03 0.782 97.78 7.26 ± 3.50 12.02 ± 06.20
d04 0.813 72.59 6.64 ± 2.87 15.91 ± 07.05
d05 0.416 81.48 6.17 ± 3.21 14.35 ± 07.66
Units percentage percentage seconds seconds

Figure 3 represents the Person’s correlation heatmap of the variables and
KPIs, where the values can be (briefly) interpreted as measuring the strength
of the linear relationship between variables (similar results where obtained by
Spearman’s correlation). Looking at the figure, both Wage and Experience Time
have a reasonable negative correlation with the cAMPM. This fact is interesting,
as it tells us that workers with high wages and high experience time have a
lower complementary value of AMPM (remember that AMPM is the Average
Measured Period of time a workstation is occupied processing a product, so
the lower the complementary value, the higher is the measured time on the
workstation). Such may seem against common sense, but the reason relies on the
fact that, for production efficiency, the most experienced workers are allocated
to the most complex workstations, with higher processing times and problematic
jobs. Hence, to eliminate this bias, the cAMPM variable has been removed from
the model, and it will not be used from this point further in the analysis.

4 Main Results

4.1 Benchmark of performance variation between consecutive work
sessions

Proposed by [13] as a derivative of the well-known data envelopment analy-
sis (DEA) methodology, multi-directional efficiency analysis (MEA) is a non-
parametric approach that has been widely used nowadays (some applications
are [14, 15, 12]). This refined approach aims to provide further insights about
the potential improvement for each factor involved in the model, to make a
more efficient and cost-based plan to either maximize efficiency or minimize
inefficiencies. For advantages of using MEA over DEA, see [16–18].

The benchmark done here (in the output orientation version) over the tuples
(worker, day) can be briefly interpreted as the best ranked tuples being the
ones who are capable of maximizing the KPIs of the next work session, when
compared with their KPIs of the current work session, if somehow it was possible
to normalize and compare all input variables between workers.

The MEA algorithm was applied to analyze the variation of performance of
14 workers from shift 1 on 5 work sessions (the data sets). Both shift metrics
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Fig. 3: Variables’ correlation matrix/heatmap.

presented in Table 2 were selected as inputs (the values at t) and outputs for
the MEA model (the values at t + 1) to compute the efficiency scores. From
the results, the average MEA score of the 14 workers in the transition from
d03 to d04 was the lowest recorded, being near 0.4. The transition from d04 to
d05 obtained a score of 0.92. On the contrary, transitions from d01 to d02 and
from d02 to d03 were the transitions with the best performance improvements,
attaining a 1.0 score. This represents a first level of root cause analysis, as it
identifies a significant performance variation in the data. With the above infor-
mation, experts are now able to explore these situations identified as significant
performance variations and derive good practices for future improvement plans.

Based on this first outcome, benchmarked results were split into 2 groups
and labelled: (i) the so-called Efficient Group (G+) was labelled as "1", and
it is composed of workers with a MEA score equal to or bigger than a defined
threshold s ∈ ]0, 1[; (ii) the Inefficient Group (G−) which was labelled as "0", and
it contains all entities with MEA scores below the s threshold. For our problem,
s was chosen to be the median of the obtained scores. These groups define the
so-called Classification data set.

From here, the next step will be to determine the factors/variables that most
influenced or can best explain the MEA scores, measuring the production line’s
ability to improve between work sessions.
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4.2 Determination and analysis of variables’ relevance to explain
workers’ performance variation

Researchers and industrial engineers have built up a wealthy literature on classi-
fication and regression models and their applications to real-life industrial cases
(the literature is quite extensive). In particular in root cause analysis, one of
the recent approaches it to fit a machine learning model and to use feature im-
portance (FI) to get the factor/causes relevance. However, FI is a explainable
characteristic of the particular fitted model, which may not represent correctly
the problem.

In fact, a key issue in the classical FI approach in machine learning is that
FI is generally not stable to small perturbation of the features’ data because
the used model are not robust to perturbations. The robustness problem has
been studied thoroughly during the last decades, with a fast paced development
of robust approaches in some contexts (e.g., see [19–21]). The great purpose of
constructing a robust ML model is to get more reliable estimates for unspecified
parameters in the presence of outliers, so the outlined root causes, model pre-
dictions are also more valid and trustworthy. Sometimes, those robust models
attain a worst performance then not robust ones, but by construction they are
far more reliable for FI. For the above reasons, the work from [22] combining a
robust ML models with eXtreme Gradient Boosting (XGBoost) has been studied
and employed in the methodology. XGBoost has been greatly recognized in the
well-known Kaggle competitions due to its great performance and fast response
to classification/regression predictive modelling problems, for structured or tab-
ular data sets (some recent examples of its effectiveness are [23, 24]). In our case,
after hyper-parameters optimization, the best model can be select as a good rep-
resentation of a function mapping features into the Efficient/Inefficient Groups
classes. Because we focus on getting variable relevance overfitting is a desired
situation and was promoted, because it means that our model best characterizes
the current relation between inputs (features) and the output (label).

For explaining the model results, allowing a sort of root cause analysis, we
use the so-called SHapleyAdditive exPlanation (SHAP). This method is a game-
theoretic approach proposed in [25], which aims to analyse complex models when
there is a set of features that work as inputs and which produce a set of outputs
(or predictions). The goal is to explain the predictions by computing the contri-
bution of each feature, in the form of a value denominated the Shapley value.
The SHAP value provides insight into how to fairly distribute the prediction
among the features. Therefore, it gives a powerful measure of the importance of
each individual feature in a model. The larger the SHAP value, the bigger the
importance of such feature to the model explanation.

Following the steps of the proposed methodology of Figure 1, a grid hyper-
parameter optimization of the (robust) XGBoost classifier was performed, and
the best model metrics are described in the Table 3. Notice that this is a binary
classification problem which is slightly imbalanced (27.8% vs 72.2%). These as-
sessment metrics are considered good enough to assume the relevance of the
SHAP analysis.



10 Brochado et al.

Table 3: Results metrics of the XGBoost.

Precision Recall F1-score Support
G− 1.00 0.93 0.97 15
G+ 0.98 1.00 0.99 41
macro avg 0.99 0.97 0.98 56
weighted avg 0.98 0.98 0.98 56

At the beginning of the methodology, we address SHAP analysis when ap-
plied on a robust machine learning method as a RCA approach for the difference
between the Efficient Group (G+) and the Inefficient Group (G−) of workers.
Figure 4 shows the SHAP performance variance relevance plot. All seven vari-
ables are sorted in descending order based on their relevance to attain the specific
classification class by the model. The red colour represents a high value of the
variable for a specific observation, while blue represents a low value of the vari-
able.

Fig. 4: Variables relevance plot computed with XGBoost+SHAP.

A global analysis of the SHAP results shows that variables Wage, DelayTime,
and Experience Time are the less relevant, whereas Quality and cRework are the
most relevant. So, looking at the top relevant variables Quality and cRework, it
can be said that lower values of both metrics are determinant for obtaining the
respective classification. The same thing can be mentioned about lower comple-
mentary values of Reworks: if there is a big number of reworks in a current work
session are determinant to define the classification class. For higher Quality val-
ues, the interpretation is not as obvious, so in this situation, Figure 5(left) can
help clarify what is the most prominent impact it has on the model - a negative
impact but in some situations it can also have a slight positive impact.
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On the other hand, higher values of Response Time are also associated with
better determinant where, again, it is not clear about lower values. Figure 5(left)
indicates a (global) positive model impact through this variable.

For this work, the partial dependence plot was also computed with SHAP.
However, because the outcome did not provide any significant conclusion, it was
decided not to include it at the analysis.

Fig. 5: (left) Variables relevance plot computed with SHAP; (right) MEA score
prediction results of workers’ performance for the next work session.

4.3 Prediction of the performance variation benchmark

By the end of our RCA approach, the regression data set with the MEA scores,
plus the outcomes provided by the SHAP analysis, were used to train the robust
XGBoost algorithm, and a regression model was obtained. This model is able to
predict the entities’ performance (MEA score) for the next work session based
on the some variables of the current work session, in particular, it was used
(Quality,RespT ime, cRework).

These features were selected, based on the results of an algorithm created to
detect which feature (or, in this case, which set of features) could better predict
the value of the MEA score. Figure 5(right) compares the MEA performance
results of the test data set with the predicted outcomes of the XGBoost robust
regression model. The registered RMSE metric is 0.00376, indicating that the
model has a quite good fit. Just by looking at the result in Figure 5(right), the
same conclusion of good fit can be taken. Thus, with this magnitude of error,
managers may truly rely on the prediction model results to accurately predict fu-
ture benchmark performance variations. This is quite useful for situations when
the algorithm detects significant drops, so managers can try to identify the rea-
sons or root causes for such events.
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5 Conclusion and Future Work

In this work, a set of data sets from a use case problem of a discrete manufac-
turing process at Bosch TT were analysed and it was possible to:

1. Identify significant performance variations of 14 workers operating on a bal-
anced MPL, between the transition of consecutive work periods;

2. Determine the causes/factors, i.e., the variables that led to high/low perfor-
mance variations;

3. Build a prediction model capable of detecting future performance variations
score in the MPL based on the values of the current variables produced by
the 14 line workers on a shift.

With these results, experts are now able to explore specific events identified
as significant performance variations and derive good practices for future im-
provement plans, or even identify, in time, the causes/variables that will lead to
such future variation.

The followed methodology fuses techniques from operational research (MEA),
machine learning (XGBoost) and game theory (SHAP) was employed. The at-
tained XGBoost regression model registered a quite good RMSE metric. One of
the limitations described in [9] is that although the model is robust by construc-
tion, its applicability depends on the set of process variables chosen. Because
these variables become the model features, they may induce low values of the
machine learning evaluation metrics for the classification model, the foundation
for the SHAP analysis. In this work, this problem was overcome, by drawing,
analysing and eliminating redundant variables detected with the correlation ma-
trix. Another concern mentioned in [9] is that the methodology approach does
not deal (automatically) with the existence of unbalanced classes.

After further real-data validations, this work is planned to be deployed to
production testing as a set of micro-services, communicating with Kafka brokers
connected to the manufacturing execution system.

Regarding future work, one of the main goals of the research team is the
design and development of a data-driven platform to support continuous im-
provement activities in companies. Although in a prototype phase, this platform
will follow the structure of an extensive protocol (a well-defined set of rules
and steps), in order to deliver a unified continuous improvement tool that joins
all areas of operation of a company, from the top management, down to the
operational level. To this end, the DMAIC (Define-Measure-Analyse-Improve-
Control) strategy, well-known as a data-driven improvement approach to help
reduce process variation, and deriving from the Six Sigma area, will be used as
the protocol foundation and integration tool.

The methodology applied to the problem addressed in this paper (see Fig-
ure 1) will pertain to the Analyse phase of the DMAIC, and it represents one
of two possible approaches developed by one of the authors for root cause anal-
ysis of key performance indicators (KPIs) (see Figure 6, RC2 path). The RC1
approach was tested and applied to another use case presented by Bosch TT,
which can be found in the following work [27].
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Subsequently, it is intended to introduce in the DMAIC’s Improve stage
the PDCA cycle (Plan-Do-Check-Act), a well-known approach for continuous
improvement and problem-solving [28]. Thus, the Improve phase can integrate
multiple PDCA cycles, as many as necessary, to effectively produce an improve-
ment, which must be measured based on a quantifiable metric.

Fig. 6: KPI Root Cause Analysis approaches for the DMAIC’s Analyse phase.

Data Availability Statement. All data sets used in the present study are
confidential information of Bosch company manufacturing systems, so they are
not publicly available.
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