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Cascaded channels have been considered in several physical multipath propagation scenarios. However 
they are subject to phenomena such as multipath scattering, time dispersion and Doppler shift between 
the different links, which impose great challenges in relation to the channel estimation processing 
function in the receiver. In this paper we propose to tackle the problem of cascaded channels estimation 
in the fifth-generation and beyond (5G+) systems using convolutional neural networks (CNNs), without 
forward error correction (FEC) codes. The results show that the CNN-based framework reaches very close 
to perfect (theoretical) channel estimation levels, in terms of bit error rate (BER) values, and outperforms 
the least square (LS) practical estimation, measured in mean squared error (MSE). The benefits of CNN-
based wireless cascaded channels estimation are particularly relevant for increasing number of links and 
modulation order. These findings are further confirmed at the CNN implementation stage on a field 
programmable gate array (FPGA) platform for a number of realistic quantization scenarios.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

In the literature, the wireless cascaded channel has gained at-
tention, mainly due to its deployment in different communication 
scenarios [1–10]. Indeed, the wireless cascaded channel has been 
considered for cooperative vehicular [1], satellite [2] and multihop 
communications systems, relay stations [3–7], and in the context 
of intelligent reflecting surface (IRS) [8–10] for example.

Cascaded channels are subject to phenomena such as multipath 
scattering, time dispersion and Doppler shift between the different 
links, which impose great challenges in relation to the channel es-
timation processing function in the receiver. Thus, over the years, 
new estimation techniques have been proposed in order to deal 
with these issues and improve the global network performance, 
given the impact of the channel estimation processing function on 
it. In [3] for example, the performance analysis for multiple-relay 
amplify and-forward (AF) cooperative system over fading chan-
nels, with imperfect channel estimation, is presented. The authors 
in [3] demonstrate that a minimal imperfection in the channel es-
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timation influences directly the overall performance of a system 
containing multiple-relay.

Regarding works that address practical and theoretical cascaded 
channel estimators, the authors in [4] use a predefined pilot matrix 
sequence in order to improve the channel estimation performance 
in a two-hop relay system using the least squares (LS) algorithm. 
In [5], a channel estimation process for dual hop multiple-input 
multiple-output (MIMO) orthogonal frequency division multiplex-
ing (OFDM) relay networks is described, in which an iterative al-
gorithm was enhanced in order to reduce the computational cost. 
Furthermore, in [6,7], new algorithms are proposed to decrease the 
channel estimation operation overhead in OFDM relay networks, 
due to the necessary number of N channel estimations.

Recently, encouraged by the significant advances of deep learn-
ing (DL), several studies have applied convolutional neural net-
works (CNNs) for wireless communication processing functions, in-
cluding the channel estimation [11,12]. In this context, it is worth 
mentioning that DL is interesting given the ability to automati-
cally extract the underlying representative characteristics of wire-
less communications. In addition, when compared with traditional 
methods for channel estimation, DL has the advantage of recogniz-
ing some patterns that mathematical algorithms cannot describe 
well, such as unknown and complex channel models, and non-
linear problems.
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In 2004, the authors in [13] introduce machine learning (ML) 
for nonlinear channel estimation in MIMO systems, in which a 
new method for multiple variable regression estimation based on 
support vector machines (SVM) was developed. More recently, 
O’Shea and Hoydis [12] exposes the DL potential for the physical 
layer (PHY), highlighting the neural networks (NNs) ability to learn 
and compute the typical PHY processing functions. In [14], deep 
NNs were applied to the channel estimation and signal detection 
processing functions, in which a DL model was first trained offline 
to learn the channel distortion and interference statistics and then 
used for recovering the transmitted data. Furthermore, in [15], 
the power of CNNs to deal with the channel estimation function 
was demonstrated considering a fast fading communication chan-
nel. In [16], the authors describe the robustness of a CNN to the 
channel estimation for massive MIMO systems with pilot contam-
ination. Kang, Chun and Kim shown in [17] that the CNNs are 
competent to perform the channel estimation function for MIMO 
systems with received signal-to-noise ratio (SNR) feedback in two 
fading scenarios, namely: quasi-static block and time-varying.

In addition, exploring the fifth-generation (5G) and beyond 
(5G+) trends, the results in [18] show that the deep CNNs are 
also effective in millimeter waves (mmWaves) massive MIMO sys-
tems. Also regarding 5G, it is investigated in [19,20] the influence 
of spatial correlation, Doppler shift and reference signal resource 
allocation in the channel estimation. The first one uses a two-
dimensional (2D) CNNs architecture based on U-net, and a 3D 
CNNs architecture for handling spatial correlation. The last work 
uses a novel CNNs architecture to deal with various combinations 
of delay and doppler spread.

Motivated by the proven potential of the CNNs to perform 
channel estimation, in this paper we go further and study the 
benefits of CNN-based channel estimation processing function con-
cerning particularly wireless cascaded channels in 5G+ systems, 
without forward error correction (FEC) codes. Each individual and 
independent link of the cascaded channel is characterized as a 
tapped delay line (TDL), typically the considered model in 5G 
networks. In addition, in contrast to the methodologies adopted 
in [5–7], in which the channel estimation is performed after each 
one of the links of the relay system, the proposed CNN estimator 
reduces these operations to only one in the receiver. That is, the 
algorithm proposed replaces the iterative process of conventional 
estimators and, consequently, reduces the overall complexity. In 
this study, the quality of the channel estimation processing func-
tion is evaluated by the mean squared error (MSE) metric and the 
overall performance of the system is assessed through the bit error 
rate (BER).

The major contributions of this work are summarized as fol-
lows:

• We propose to overcome the challenges in cascaded wireless 
channels estimation (multipath scattering, time dispersion and 
Doppler shift between the different links) by a CNN model. 
CNNs proved to be an advantageous channel gain estimator 
compared to the classical LS algorithm.

• We propose in this study to reduce the receiver complexity 
concerning the N wireless cascaded channel estimation pro-
cessing functions. This complexity reduction is performed in 
the sense of the number of estimations, in which N estimators 
for each individual channel turn into one operation with CNNs, 
thus avoiding the iterations of conventional estimators, making 
it less expensive while maintaining a good performance.

• We adopted the TDL channel model, applied to 5G wire-
less communication scenarios, making this study an important 
contribution for several use cases related to 5G networks.

• We propose a CNN architecture optimized for wireless 5G cas-
caded channels, take into account a reasonable compromise 
2

Table 1
Features for 5G NR simulation.

5G NR features

Bandwidth 100 MHz Subcarriers 612
Numerology 1 Cyclic Prefix Normal
Subcarrier Spacing 30 kHz Number of Frames 600

between model accuracy, performance and training time. The 
aforementioned architecture is the result of a study in which 
several specifications were analyzed, including the validation 
frequency, the loss function, the maximum epochs, the shuffle 
operation, initial learn rate and the validation patience.

• The trained CNN is embedded on the field programmable gate 
array (FPGA) platform and tested in real time conditions with 
different fading channels. The FPGA prototype maintains close 
to perfect (theoretical) 5G+ channel estimation levels and out-
performs the LS approach. Furthermore, a quantization study 
to evaluate the input data type impact on the CNNs perfor-
mance in the FPGA was performed.

The remaining of this article is organized as follows. Section 2
describes the cascaded channel estimation approach using CNNs. 
In Section 3, the CNNs FPGA prototyping is explained. Results are 
shown in Section 4 and Section 5 is devoted to the conclusion.

2. CNN-based cascaded channel estimation

In this section, the approach concerning the cascaded channel 
estimation using CNNs is presented, in which the cascaded channel 
basic concepts, the end-to-end communication system, the CNNs 
architecture, and the global project flow are described.

2.1. End-to-end communication system

In this work, the 5G new radio (NR) communication sys-
tem is considered, as defined by the 3rd generation partner-
ship project (3GPP). Table 1 summarizes the adopted 5G fea-
tures, which comply with 3GPP TR 38.211 Release 15 specifica-
tions for 5G NR standard [21]. The resource grid (RG) includes the 
physical downlink shared channel (PDSCH), the physical downlink 
shared channel-demodulation reference signal (PDSCH-DMRS) and 
the physical downlink shared channel-phase tracking reference sig-
nal (PDSCH-PTRS).

The end-to-end communication system implemented in this 
work is presented in Fig. 1. It consists of a typical 5G transmitter, 
a cascaded channel with N links and a 5G receiver. In the receiver, 
the CNN-based channel estimation is compared with both the per-
fect (theoretical) and the practical (LS) estimation approaches with 
respect to the MSE and the BER at the end of the 5G NR link. 
The necessary data for the overall CNN training, validation and test 
flow corresponds to the RG obtained after the OFDM demodulation 
and the perfect estimation complex values.

As observed in Fig. 1, the perfect timing and frequency syn-
chronization is adopted so as not to interfere with the channel 
estimation results. In OFDM systems, which is the 5G NR case, 
timing and frequency offsets result in the rotation of the signal 
constellation, inter-symbol interference (ISI) and inter-carrier in-
terference (ICI) [7], which can significantly deteriorate the system 
performance. Thus, as we aim to study the feasibility of the CNNs 
approach in the cascaded channel estimation, only the channel 
estimation processing function is analyzed considering the previ-
ous perfect synchronizations to prevent the propagation of errors. 
Likewise, FEC codes are not considered in the system model of 
this work due to the non-dependence of channel estimation with 
the related operation. FEC codes (i.e. low-density parity-check or 
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Fig. 1. Block diagram of the 5G NR end-to-end communication system.
Table 2
TDL channel features for 5G NR simulation.

5G TDL channel features

Delay Profile (DP) TDL-A
Delay Spread (DS) 3e-7
Seed 0
Maximum Doppler Shift (MDS) 50

turbo codes) operate at the edge of the channel, where the trans-
mitted data bits are encoded so that the received erroneous data 
bits can be recovered at the receiver. This means that the channel 
estimation is transparent to the aforementioned correction pro-
cess.

Regarding the different approaches for the channel estimation, 
it should be mentioned that the perfect is obtained by the the-
oretical complex channel gains, being the reference values to the 
others. The practical channel estimation is provided by the interpo-
lation of the channel response take into account the PDSCH-DMRS. 
Regarding the CNNs channel estimation, the received RG can be 
seen as a 2D image and thus, the channel estimation turns into 
an image processing problem. In fact, the CNNs are widely used 
in several computer vision tasks, such as image classification [22]
and face recognition [23] for example. In Fig. 1, the 5G NR channel 
is characterized by the TDL, in which the fading model considered 
corresponds mainly to the Rayleigh and Rician, in some cases. In 
Table 2, the TDL channel features adopted in this work are pre-
sented. The number of multipaths, maximum Doppler shift, delay 
and power paths are standardized by European telecommunica-
tions standards institute (ETSI).

2.1.1. Cascaded channel system
As said in Section 1, cascaded channels have been considered 

in several physical multipath propagation scenarios. In this con-
text, the block diagram of the TDL cascaded channels is presented 
in Fig. 2. In the aforementioned figure, the general system model 
corresponds to a set of time-independent channels in cascaded 
configuration, between the transmitter and receiver, represented 
in Fig. 1 as a box named N Cascaded Channel. Fig. 2 represents this 
cascaded channel model adopted in this work, in each TDL chan-
nel is represented by tdlx and the additive white gaussian noise 
(AWGN) by n, in which x represents the number of the channel 
instantiation. Note that each channel corresponds to one indepen-
dent channel generation.

2.2. CNN architecture

The present work was inspired by the results published in 
[16,18,19]. However, while in those studies CNNs are applied in 
one link channels, in this paper we extend the study to the far 
more challenging 5G (wireless) cascaded channel scenarios. Our 
model is a conventional CNN architecture (see Fig. 3), that con-
3

sists of an input layer with the size of 612 × 14, corresponding 
to the 5G features adopted in Table 1. The real and the imaginary 
part of each RG are subsequently input containing the interpolated 
PDSCH-DMRS symbols. Following the suggested CNN architecture 
in [16,18,19], three sets of convolutional and activation layers are 
used to extract and learn the representative characteristics (fea-
tures) of the communication system. Finally, the output is a fully-
connected regression layer, with the same dimension as the CNN 
input.

Description of the CNN layers is listed below.

• Input Layer: The interpolated PDSCH-DMRS is stored into a 
RG, and then separated into real and imaginary components. 
The CNN handles these components (real and imaginary) in 
a sequential mode (one after the other). Each 2D RG part is 
composed by 612 subcarriers per 14 symbols.

• Convolutional (Conv) Layers: The 2D RG data goes through a 
sequence of convolutional layers, composed by several filters, 
in order to extract channel features with different levels of 
complexity. The CNN architecture, shown in Fig. 3, was opti-
mized to have 3 convolutional layers and convolution filters 
with 9 × 9 and 5 × 5 dimensions. In order to keep the orig-
inal RG dimension (i.e. 612 × 14), relevant paddings (Pad in 
Fig. 3) were added in the convolutional layers.

• Activation Layer: Rectified linear (ReLU) activation functions 
are applied over the feature maps produced by the convolu-
tional layers.

• Output Regression Layer: Based on the features extracted from 
the hidden layers, the CNN outputs estimate the real and the 
imaginary part of the channel gain. Then, these parts are com-
bined to get the complex channel gain.

The network optimal parameters (weights and biases) are ob-
tained iteratively by minimizing the Loss function, defined as the 
half non-normalized MSE (MSEnn) for regression tasks. The Loss 
function between the estimated channel ( ŷi ) and the actual chan-
nel (yi ) is defined by

Loss = 1

2

n∑
i=1

( ŷi − yi)
2, (1)

where n indicates the size of the training set. For better scaling 
and visualization, the evolution of the root-MSE (RMSE) during the 
training iterations was also monitored, and is given by

RMSE =
√√√√

n∑
i=1

( ŷi − yi)
2. (2)

In Fig. 4, the RMSEs computed at each iteration with the train-
ing and the validation subsets respectively are presented. As can be 
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Fig. 2. Block diagram of the TDL cascaded channel model.

Fig. 3. CNNs structure for the channel estimation processing function.

Fig. 4. RMSE obtained at each iteration during the training process.
seen the trajectories of both curves are close to each other which 
is an indication for the lack of overfitting issues. Similarly, regard-
ing the Loss function, if the learning is successful, it is expected to 
converge to a constant and close to zero value, as it is shown in 
Fig. 4b.

The CNN training is related with the choice of a number of 
hyper-parameters. For the present model, the hyper-parameters 
that have significantly impact on the RMSE are the maximum 
epochs, the validation frequency, the validation patience, the ini-
tial learn rate, the optimization method (i.e. the optimizer) and 
data randomization (i.e. shuffling). All of them are related with 
the learning (optimization) process. The maximum epochs specifies 
the maximum number of training epochs. The validation frequency 
corresponds to how often (in terms of number of iterations) the 
validation RMSE is calculated. The validation patience is the num-
ber of epochs that the algorithm tries to improve the performance 
before giving up (if the error is not decreasing). The initial learn 
rate is a trade-off between training time (low initial learn rate) 
and overfitting (high initial learn rate). Two widely used optimiza-
tion methods were compared, namely Adam and RMSprop. Finally, 
training with (at each epoch) or without data shuffling were also 
studied.
4

Table 3
Set up of CNN hyper-parameters.

Hyper parameter Range of values Optimal value

Maximum Epochs 20, 25, 30, 35, 40, 45, 50, 55 45
Validation Frequency 1, 3, 5, 7, 9 times every epoch 5 times every epoch
Validation Patience 5, 10, 15, 20, 25, 30 epochs 15 epochs
Initial Learn Rate 3e-6, 3e-5, 3e-4, 3e-3, 3e-2 3e-4
Optimizer Adam, RMSprop Adam
Shuffle Never, Every epoch Every epoch

These parameters were optimized within a range of typical val-
ues, presented in Table 3, to achieve a reasonable compromise 
between model accuracy, performance and training time. The opti-
mal values for the hyper parameters, are summarized in the third 
column of Table 3.

In Fig. 5 and Table 4 are presented the training and the valida-
tion RMSE, for the range of typical values of the hyper parameters. 
As optimal values were considered those that provided the lowest 
RMSE, or in alternative the minimum training time. Note that, as 
in Fig. 4, the training and the validation RMSEs for the chosen hy-
per parameters are close, which is again an indication for the lack 
of overfitting issues.
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Fig. 5. RMSE for range of values of maximum epochs (a), validation frequency (b), validation patience (c), initial learn rate (d).
Table 4
RMSE results for the optimizer and shuffle hyper parameters.

Hyper parameter Optimizer Shuffle

Adam RMSprop Never Every epoch

Training RMSE 5.28 8.17 5.42 5.28

Validation RMSE 5.32 11.18 5.46 5.32

2.3. Training, validation and test flow

The overall flow performed in this study is schematically pre-
sented in Fig. 6. It consists of parameter configuration, training and 
validation steps, followed by model test and visualization of the re-
sults. Data was randomly generated and collected according to the 
3GPP specifications with the system model shown in the Fig. 1, re-
ferred in Subsection 2.1. As said previously, the necessary data for 
the CNN training, validation and test flow corresponds to the RG 
obtained after the OFDM demodulation and the perfect estimation 
complex values. Thus, this data was randomly splitted into training 
(9600 RGs), validation (2400 RGs), and test (2400 RGs) sub-sets. 
The training and the validation steps are performed in-the-loop 
to control model overfitting problems. The simulation parameters 
were chosen such that each RG is subject to individual channel 
effects, covering a wide range of typical 5G channel effects. The fi-
nal channel estimation quality was assessed by the MSE on test 
data (not used during the training and the validation steps). In 
addition, the overall channel performance, in terms of how well 
the transmitted bits are recovered, is evaluated by the test data 
BER.

3. CNN-based channel estimation on FPGA platform

The FPGA devices are widely used in wireless processing func-
tions due to their real-time performance and the advantage of 
5

being reconfigurable. As FPGAs are the major candidate for embed-
ded devices in 5G networks, we tested the proposed channel es-
timation approach when the CNN-model is implemented on FPGA 
hardware.

In our analysis, a Zynq UltraScale+ MPSoC ZCU102 evaluation 
kit with a XCZU9EG-2FFVB1156 device is adopted in order to eval-
uate the trained CNNs. The overall flow considered in this work is 
shown in Fig. 7, in which the necessary configurations are previ-
ously performed, with CNN architecture loading, the FPGA selec-
tion, and the bitstream that contains the hardware configuration 
file. In detail, an ethernet connection is established from the com-
puter to the FPGA, to load a firmware image in a secure digital 
(SD) card. This contains the support package with the embedded 
software and the FPGA programming file containing a generic DL 
processor intellectual property (IP) core. After that, the FPGA boot 
from the SD card is executed. Next, the compilation and the CNN 
deployment is done. For each loaded input data quantity, the esti-
mation is delivered and the results are visualized, along with the 
latency report.

4. Results and discussion

In this section, we compare the BER and the MSE of the pro-
posed CNN-based channel estimation with the perfect and the 
practical approaches for different SNR levels, number of links and 
modulation order. Perfect approach refers to the theoretical/ideal 
channel estimation and practical approach refers to the conven-
tional LS method, a consolidated method for the channel estima-
tion in cascaded channels [18]. The channel parameters are listed 
in Tables 1-2, and the CNN optimal hyper-parameters are listed in 
Table 3. The results here demonstrate the generalization proper-
ties of the CNN-based approach, because they are obtained with 
the test subset of the generated data, i.e. data not used to train or 
validate the CNN model.
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Fig. 6. CNN-based channel estimation flow diagram.

Fig. 7. FPGA prototyping flow to CNNs implementation on hardware.

Fig. 8. BER and MSE versus SNR, for constellation M = 64 and varying number of links (N): (a) 1 TDL channel, (b) 2 TDL channels, (c) 3 TDL channels and (d) 4 TDL channels. 
In the legend, CE is channel estimation.
6
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Fig. 9. BER and MSE versus SNR, for N = 2 channels and varying constellation (a) M =4, (b) M =16, (c) M =64 and (d) M =256. In the legend, CE is channel estimation.
Table 5
Nonidentical TDL channel features.

5G TDL channel features Channel 1 Channel 2 Channel 3

Delay Profile (DP) TDL-A TDL-B TDL-C

Delay Spread (DS) 3e-7 1e-7 0.3e-7

Seed 0 1 2

Maximum Doppler Shift (MDS) 50 100 25

In Fig. 8, BER and MSE curves are presented, for different num-
ber of cascaded channel links (N), with the modulation order, M , 
of the M-ary quadrature amplitude modulation (M-QAM) scheme 
equal to 64 in 5G NR system. Initially, it should be mentioned that 
the BER measures presented in Fig. 8a are in accordance with [24], 
for the traditional techniques without FEC codes. In all cases (one, 
two, three or four TDL links) in Fig. 8 we observe that the CNN-
based approach significantly reduces the MSE and outperforms the 
practical (LS) channel estimator. This is particularly notorious for 
low SNR levels (0-10 dB). For higher SNR (30-35 dB) both LS and 
CNN-based estimators tend to close MSE values. However, for the 
4 links channel scenario (see Fig. 8d), even for high SNR levels the 
MSE of the practical estimator is much worse than the CNN-based 
counterpart. In terms of BER, while the CNN-based approach fol-
lows very closely the perfect estimator for the whole SNR range 
(0-35 dB), the practical approach worsen for higher SNR levels. 
Overall, the benefits of applying a deep learning approach are em-
phasized for increasing number of links. The negative effect of the 
increasing number (N) of links in the cascaded channels, namely 
noise, fading, distortion, are significantly diminished when esti-
mated by a data-based approach that certainly encodes better the 
channel specific characteristics than the practical (LS) approach.
7

In Fig. 9, BER and MSE versus SNR are shown considering the 
modulation order M equal to 4, 16, 64 and 256 symbols and cas-
caded channel with N = 2 links. When M increases, the constella-
tion symbols are closer and, consequently, they are more suscep-
tible to the effects of the channel. This makes the receiver more 
likely to make mistakes in the decision process and therefore BER 
increases as seen in Fig. 9. However, the variation of M does not af-
fect the channel estimation that much as the change of the channel 
links. Nevertheless, similar conclusions as in Fig. 8 can be drawn. 
The CNN-based channel estimator outperforms the practical ap-
proach in terms of smaller MSE for the lower SNR range (for all 
values of M) and closer to the theoretical BER than the BER ob-
tained with the practical estimator.

Simulated BER and MSE curves are shown in Fig. 10 as a func-
tion of the SNR, considering the channel estimation performed 
with the CNNs, perfect and practical approaches. In these simu-
lations, nonidentical fading channels are adopted, since this is a 
more realistic scenario. The TDL channel features are described in 
Table 5. In addition, it is considered M = 256 and N = 3. For com-
parison purposes, BER and MSE curves are also included in Fig. 10
taking into account the FPGA prototyping step. This study is per-
formed in order to assess the CNN implementation feasibility for 
the 5G+ networks. In the FPGA experimental setup, there is a input 
data type quantization from 64 bits to 32 bits in floating point, re-
sulting in a relative error mean between the two implementations 
in the order of 10−8, concerning of MSE, with the BER unchanged, 
thus justifying the applicability and implementation of CNNs in 
FPGAs in several practical scenarios, which made this framework 
rather plausible. Thus, if an architecture with 32 bits in floating 
point is considered, it should be mentioned that the error obtained 
is basically due to the truncation of the number of bits.
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Fig. 10. BER and MSE versus SNR. Comparison between CNN-based cascaded channel estimator in FPGA hardware, Perfect and Practical (LS) approaches. 3 nonidentical fading 
channels and M = 256 are adopted. In the legend, CE is channel estimation.

 

In our work, the impact of the number of input data bits in 
a more realistic implementation, that is, with a smaller number 
of bits combined with a fixed point architecture, is also analyzed 
in order to maximize the overall performance of the wireless net-
work. For this input data type quantization study, a set of four 
fixed point configurations is also included in Fig. 10 in order to 
compare the BER and MSE values between them, namely: 32 bits 
with 27 fractional places, 24 bits with 19 fractional places, 16 bits 
with 11 fractional places, and 8 bits with 4 fractional places. The 
choice of the length regarding the integer and fractional bits re-
sults in a careful study in which the relative error between the im-
plementations is minimized. From the results presented in Fig. 10, 
it is possible to verify that the BER and MSE curves concerning 
the CNNs implementation in software and in FPGA have an ex-
cellent match. The difference in the channel estimation in terms 
of the MSE metric, looking to the relative error mean (quantiza-
tion error), is shown in Table 6 taking the 32 bits in floating point 
implementation as reference. The results obtained are directly af-
fected by the bit length, in which the behavior of the quantization 
error follows the decrease in the number of bits. The impact of 
this quantization study on BER is also dependent on the number 
of bits, as shown in Table 6. However, the impact is smaller in the 
order of two decimal places than in the MSE metric. Regarding the 
FPGA implementation feasibility study, it is important to consider 
the input data type impact in the global performance system. For 
example, from the case with 32 bits (floating point) to the 8 bits 
(fixed point), the quantization error is 10−4, which imposes a BER 
increasing in the order of the 10−2. This means that the data in-
put type quantization step has a considerable impact on the overall 
system and it is necessary to take it into account in the real system 
implementation.

In terms of CNNs latency, Table 7 shows the obtained perfor-
mance during the FPGA implementation step considering the clock 
frequency equal to 220 MHz. Note that the layers that introduce 
more latency are the convolutionals, since the activation ones cor-
responds only to a function executed in a clock cycle. This result 
8

Table 6
Quantization errors regarding MSE and BER metrics.

Input data type MSE quantization 
error

BER quantization 
error

32 (24 fractional) bits 10−7 10−5

24 (19 fractional) bits 10−6 10−4

16 (11 fractional) bits 10−5 10−3

8 (4 fractional) bits 10−4 10−2

Table 7
CNN latency due to FPGA implementation, for clock frequency = 220 MHz.

CNNs implementation latency

Layer Clock cycles Seconds

Conv1 1558743 0.00709
Conv2 5066715 0.02303
Conv3 546545 0.00248
All Layers 7171961 0.03260

proves the CNN implementation feasibility in the FPGA platform, 
relatively to the necessary processing time.

5. Conclusions

In this paper, cascaded channel estimation in the fifth-generation
and beyond (5G+) systems using convolution neural network 
(CNN), without forward error correction (FEC) codes, was pro-
posed. In addition, the CNN prototyping was also performed, em-
ploying the field programmable gate array (FPGA) platform. The 
results of the implementation of CNNs on FPGA hardware in sev-
eral realistic scenarios, revealed this deep data-based framework 
as very promising. Furthermore, the impact of the number of bits 
combined with a fixed point architecture was also analyzed. The 
results of the quantization study have shown that the performance 
of the 5G and 5G+ wireless networks can be significantly enhanced 
by a CNN-based channel estimation embedded in FPGA hardware. 
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In addition, the N estimators for each individual channel was turn 
into one operation with CNNs, thus avoiding the iterations of con-
ventional estimators and reducing the receiver complexity. Several 
experimental and simulation results were obtained, concerning 
mean squared error (MSE) and bit error rate (BER) under different 
number of links and modulation order. These results show that the 
CNN-based framework reaches very close to perfect (theoretical) 
channel estimation levels, in terms of BER values, and outperforms 
the LS practical estimation, measured in MSE. This indicates that 
the proposed CNN-based channel estimator has the potential to 
mitigate the negative effects of channels with several links and re-
cover reliably the real and imaginary parts of the channel complex 
gains. In all studied scenarios, the CNN-based wireless cascaded 
channel estimator outperformed the conventional LS technique. 
These findings are particularly relevant for increasing number of 
links and increasing modulations orders.

As future work, a system model with real synchronization pro-
cesses will be considered, in which the symbol timing detection 
and carrier frequency offset algorithms are take into account in 
order to verify the impact on the CNN-based channel estimation 
processing function. It should be mentioned that this case is con-
sidered more appropriate and of practical interest to characterize 
more realistic 5G scenarios, since the timing and frequency offsets 
caused by absent of perfect synchronization result in the rotation 
of the signal constellation, imposed by the inter-symbol interfer-
ence and inter-carrier interference, which can significantly deteri-
orate the system performance. Furthermore, an exhaustive study 
with different 5G new radio configurations can be performed.
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