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Abstract 

In this work, a 3D real-time quality inspection platform for industry is presented, with a specific focus on automotive cast iron 

parts. It is supported by a cloud-based platform, which combines recent software and hardware advances to deal with large amounts 

of information related to the acquisition process and the computational power needed to execute the computer vision platform 

algorithms (e.g., point cloud filtering, alignment, and comparison). This platform introduces modifications in the current workflow 

through the digitalization of the inspection process, promoting the reduction of human related inspection errors as well as ergonomic 

issues, while making available a solution for automatically gathering and storing data in a cloud-like environment for further access 

and advanced data analytics. 
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Nomenclature 

CAD  Computer Aided Design 

QI   Quality Inspection 

PCL:  Point Cloud Library 

TLS:  Terrestrial Laser Scanning 

RANSAC: Random Sample Consensus 

FCSOR:  Fast Statistical Outlier Removal 

ICP:   Iterative Closest Point 

NDT:  Normal Distribution Transform 

ECMPR: Expectation Conditional Maximization for Point Registration 

SVR:  Support Vector Registration 

CPD:  Coherent Point Drift 

1. Introduction 

Currently, quality inspection (QI) procedures in industry in general, and in the context of automotive parts 

assessment in particular, are still carried out mainly manually, in spite of being known the benefits of converting 

traditional QI procedures into more automated digital pipelines (reduced human errors, improved ergonomic 

conditions, possibility of reallocating professionals to activities in which they will be more needed, etc.). Among the 

approaches that have been allowing such digitalization outstands computer vision, which has been progressing towards 

zero-defect solutions, due to continuous advances in hardware and software. More specifically, recent advances in 

laser line scanners using laser triangulation (e.g., high resolution, wider field of view) along with the capacity of 

computer systems to handle large more and more amounts of data (e.g., more powerful graphics processing unit) and 

more advanced logical/numerical strategies to manipulate data efficiently underly as arguments to sustain the QI 

digital journey. 

Regarding the 3D QI process, many are the works that can be found in this field, such as [1], which addresses the 

metrological suitability of a laser line scanner to evaluate the quality of the 3D metal prints comparatively to computer 

aided design (CAD) models, as well as the accuracy of the obtained measurements using such type of scanner. The 

method resorts to the standard deviation of the point cloud acquired from objects laser scanning to measure errors. 

Filters that eliminate those points responsible for the difference between the measured and the reference values are 

also proposed. 

Another proposal [2] includes the construction of a theoretical point cloud of the 3D digital model considering the 

generated G-code and the computation of the dimensional deviations between the theoretical 3D point cloud and the 

corresponding printed model. The method uses a high-resolution point cloud data of the physical printed part with the 

digital 3D model and introduces a vision-based method to scan, filter, segment, and correlate in real-time, as well as 

to evaluate the performance of the additive manufacturing process. This approach allows to decide whether or not to 

continue the additive manufacturing process.  

In [3], authors proposed another framework to automatically monitor the visual surface defects inside of the wire 

arc additive manufacturing technology. It includes libraries such as: Point Cloud Library (PCL) and Open-Source 

Computer Vision Library (OpenCV). The method includes three steps: 1) Point cloud pre-processing, using a 

statistical outlier removal algorithm; 2) topographic image conversion, transforming the filtered 3D point cloud into 

a 2D heightmap, with each pixel corresponding to a height value, for further analysis; and 3) defects detection, 

employing the Support Vector Machine (SVM) classifier with the input variables of 12 features (e.g., intensity, 

maximum, minimum, mean, contrast, standard deviation, entropy, flatness, homogeneity, skewness, distance to 

boundary, Laplace filtered). To improve accuracy, they applied the minimum redundancy maximum relevance 
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(MRMR) algorithm as a feature selection method that quantifies the relevance between the features and response 

variable and achieved the accuracy of 99.8%.  

In [4], authors focused on industrial plant piping system inspection, wherein an improved technique relying on 

terrestrial laser scanning (TLS) for data acquisition, normal-based region growing and efficient random sample 

consensus (RANSAC) for point cloud data processing was proposed. Two main stages are involved: 1) point cloud 

data processing, with a point-to-mesh Iterative Closest Point (ICP) algorithm for a fine registration, and an octree-

based down sampling algorithm to reduce the number of points; efficient RANSAC is then used to detect and remove 

the planar objects and apply normal-based region growing algorithm to segment the pre-processed point cloud; and 

2) performance assessment of results, relying on distance-based deviation analysis and geometric parameter 

comparison. 

In this paper, we propose a cloud-based 3D real-time inspection platform for assessing the quality of vehicle cast 

iron parts, using 3D line scan sensors, computer vision, and cloud systems. The size of the part to inspect should be 

restricted according to the field of view and the measurement range of the sensor. 

The paper is structured with 4 sections. Besides section 1, wherein an introduction and a literature review is 

provided, section 2 describes the proposed platform. Section 3 presents the platform implementation along with 

preliminary results. Finally, section 4 ends this paper with a few conclusions as well as remarks for future work. 

2. Platform proposal 

A platform for 3D cast iron parts inspection that can however be extended to other contexts is presented in Fig. 1. 

It is composed of two main components: computer vision component and cloud component. The computer vision 

component, which can be instantiated according to the number of part surfaces to inspect, includes a laser line sensor 

to acquire the top surface as a 3D point cloud, in synchronization with the movement induced by a conveyor belt, and 

also a processing unit that manages a collection of algorithms to compute cast iron parts point clouds, to measure 

surface deviations and to build CAD model representations of the scanned elements. On the other hand, the cloud 

component is a layer of dynamic and secured REST-based services for storing and retrieving scanned parts and 

respective associated data. It includes functionalities such as computer vision component(s) configuration (e.g., 

acquisition and evaluation parameters), as well as methods to save and consult inspection results. 

 

 

Fig. 1 Diagram of the platform including two main components: computer vision component and cloud component. 

For each type of cast iron part, the system supports the adjustment of a related setup of configuration parameters: 

the acquisition resolution, exposition time, timeouts, the speed of the inspection process, error thresholds (th1 and th2), 
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clusters size, down-sampling thresholds, among others. This way, the platform allows to carry out experiments while 

ensuring the flexibility to select the most proper configuration to perform QI. Selected parameters are stored in the 

cloud component ensuring that configurations are accessible to the group of computer vision components inspecting 

the different perspectives/surfaces of a given type of cast iron part. 

3. Implementation and preliminary results 

Our platform performs inspection in six stages: I) CAD model enhancement, II) point cloud capture, III) filtering, 

IV) alignment, V) evaluation and VI) upload result to the cloud – summarized in Fig. 2. Firstly, the CAD model is 

transformed into a dense 3D point cloud, considering a specific resolution threshold for detection. This stage uses 

parallel programming algorithms based on the CUDA library to estimate the point's positions from the polygons and 

vertices of the CAD model. The second stage is a non-invasive capture process using 3D line scan sensors (such as 

Gocator or Automation Technology devices) to obtain a 3D point cloud of the cast iron part that is formed from 

assembling each captured measurement profile (surface), with the support of an incremental encoder. 

 

 

 

Fig. 2 Platform stages. From left to right: a) original CAD model; b) enhanced CAD; c) captured point cloud; d) filtered point cloud; 

 e) alignment result; and f) evaluation result. 

The third stage carries out the reduction of noise (i.e., outliers) related to the 3D point cloud acquisition process, 

which can be defined as a cleaning task to remove groups of erroneously generated points that usually result from 

diverse factors regarding sensor capture operation  [5]. It aims to avoid errors in measurements and disturbances 

affecting subsequent processing steps. To tackle outliers in general and, in particular, the mixed noise that rarely 

comes isolated from the main point cloud [6], there are several filtering algorithms and techniques based on statistics, 

neighborhood search, projection, signal processing, differential equations, or a hybrid filtering (i.e., combination of 

methods). In the proposed approach, a Fast-Statistical Outlier Removal (FCSOR) algorithm was employed, which 

reduces the 3D space, thereby decreasing the computational complexity using the voxel-subsampling subprocesses, 

known as clustering [7]. 

The fourth stage handles the alignment of the filtered acquired 3D point cloud (stage III) with the 3D point cloud 

obtained from the CAD model enhancement stage (stage II). Among the available algorithms specialized in alignment  

(e.g., ICP [8][9], Normal Distribution Transform (NDT) [8][10], Expectation Conditional Maximization for Point 

Registration (ECMPR) [8][11], Support Vector Registration (SVR) [8][12], Coherent Point Drift (CPD) [8][13]) - i.e., 

iterative transformation methods that aim the convergence between acquired data and reference sample, following 

close neighborhood strategies -, in this proposal,  a process that includes rigid transformation estimated with the 
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centroids of both point clouds, followed by an iterative coarse (less density) to fine (full density) alignment process 

using the ICP algorithm was adopted, towards the attainment of optimal convergence values in real-time. 

The evaluation stage (stage V) quantifies the surface deviation between the aligned point cloud of the part and the 

enhanced computer CAD model (Fig. 3). This stage involves two steps: 

• to determine surface deviation between the filtered 3D point cloud and the mesh of the CAD model, by 

measuring the Euclidean distance between 3D points and, then, classifying each point according to a pair 

of constraint thresholds (th1 and th2); 

• and to detect missing regions in the cast iron part comparatively to a reference sample using a near-

neighborhood algorithm that considers (1) the point cloud of both scanned element and inferred from a 

CAD model representing a defect-free part as well as (2) a configuration parameter for delimitation 

purposes. 

 

 

Fig. 3 Distance deviations considering two thresholds: a) th1=0.1mm, th2=2.5mm; b) th1=1.5mm, th2=3.0mm and c) th1=2.0mm, th2=3.5mm 

According to (Fig. 3), the tuning of parameters th1 and th2 produce different results in the product quality control 

process for the same cast iron part. Just like a heatmap, the color of the points is associated with the distance deviations. 

wherein red corresponds to a distance greater than th2, distances lower than th1 are represented in green, while all the 

other distances between th1 and th2, are highlighted at yellow. Those values should be defined according to the 

resolution requirements to detect distance deviations. Fig. 3 a) shows a low threshold for an inspection that is more 

demanding in terms of tolerances, visually confirmable through the merge of red and yellow colors.  Fig. 3 b) and c) 

depict results of inspection procedures configured to be less sensitive to deviations, with a complaint combination of 

displayed colors, more specifically, scales of red/yellow/green and green/red, respectively.  The levels of detail and 

tolerances must be parametrically adjusted according to the requirements established for the inspection of a given cast 

iron part type (considering the dimensions of the elements to be scanned, supported camera´s field-of-view, distance 

and resolution, etc.). 

4. Conclusions and future works 

This work presents an innovative platform for the 3D quality control inspection oriented to the automotive industry, 

although, expansible to other areas and sectors (e.g., moulds industry). The platform introduces alterations in the 

current workflow of the cast iron inspection process, making it more digital, reducing the human-related ergonomic 

issues and inspection errors while gathering and storing data in the cloud, foreseeing the application of advanced 

techniques for data analytics. Configuring cast iron part inspection procedures are supported by the proposed solution, 

according with the required quality inspection resolution. Lower thresholds imply inspections more sensitive to errors, 

and, thus, more demanding in terms of quality control preciseness, while higher thresholds are more prone to ignore 

smoother defects. A color system provides visual feedback of the deviances, in which red identifies erroneous points, 

yellow is for medium scale perturbations still inside the defined error tolerance, and green indicates pixels that 

practically match the reference sample.  

Future work will focus on the refinement of the current data analytics techniques to make the predictions more 

precise in what regards to information related to defects’ location and probability of occurrence. Moreover, these 

optimizations will allow to specify and implement labeling techniques for building models capable of distinguishing 
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defect types. Such upgrades can bring the industry sector closer to enhanced decision making and, ultimately, defect-

free production lines. 
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